
Deep learning to estimate power

output from breathing

Erik Johannes Bjørnson Løvenskiold Grüner

Husom

Thesis submitted for the degree of

Master in Computational Science: Physics

60 credits

Department of Physics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Deep learning to estimate

power output from breathing

Erik Johannes Bjørnson Løvenskiold Grüner

Husom

© 2021 Erik Johannes Bjørnson Løvenskiold Grüner Husom

Deep learning to estimate power output from breathing

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

In collaboration with

Secure IoT systems group

SINTEF Digital

Oslo, Norway

1

Abstract

Activity tracking devices are widely used for monitoring and measuring different

aspects of physical activity, such as heart rate, speed, energy expenditure and

power output. Breathing variables like ventilation and oxygen uptake have

also been used for estimating physical effort during exercise. The link between

exercise intensity and the muscles’ increased need for oxygen makes breathing

a universally applicable metric across many activity forms. Breathing can be

measured by standard equipment such as exercise spirometers, but they are

impractical to use in normal exercise situations, because they cover the face or

mouth and often require stationary recording equipment. Respiratory inductive

plethysmography (RIP) is a method for measuring the movement of the rib cage

and abdomen caused by breathing, and it enables us to have a portable, non-

invasive way of recording breathing during exercise. Power output is a direct

measurement of the work performed by a person doing physical exercise, and is a

way of expressing the person’s energy expenditure. This thesis studies whether

we can use RIP signals to create predictive models for estimating power output

during exercise.

An N-of-1 study was performed on a highly active adult male of age 25, who

performed 21 workouts on a stationary bike. RIP signals from the rib cage and

abdomen, in addition to heart rate and power output were recorded during the

workouts. The data acquired was used to build predictive models, by using three

different deep learning methods: Dense neural networks (DNN), convolutional

neural networks (CNN) and long short-term memory (LSTM) networks. A

person’s breathing pattern may have characteristics that differ from that of

another person, which is a reason for building personalized models.

A CNN trained on a combination of features derived from RIP signals and

heart rate obtained a mean absolute percentage error (MAPE) of 0.20, which

means a 20% error on average with respect to the ground truth. The model’s

ability to give precise predictions during workouts with large fluctuations in

power output significantly outperformed the DNN and LSTM models tested in

this study. We conclude that deep learning techniques can be used for creating

personalized models that estimate power output from RIP signals.

2

Acknowledgements

Firstly, I would like to thank my main supervisor, senior research scientist Sagar

Sen, who has provided continuous guidance and motivation throughout my work

on this thesis. His experience and dedication has been invaluable when facing

difficulties, and his supervision has enabled me to have confidence in my work.

He always brings a positive energy and inspiring attitude, which has been crucial

in making my work on this thesis a pleasant and enjoyable experience.

I am also thankful to my co-supervisor Pierre Bernabé, who has provided help-

ful advice and stimulating discussions regarding both theoretical and practical

challenges during my work on this thesis.

My co-supervisor at the University of Oslo, Morten Hjorth-Jensen, has been a

huge inspiration during my time as a master student at the Physics Department,

and I would like to thank him for the care he shows his students, and for the

way he motivates those around him through his passion for science and research.

I would also like to thank my parents, Hilde-Anette and Bjørn Olav, for their

enthusiasm and mental support during challenging times. I am also grateful that

they, together with my sister Erle-Andrea, volunteered for the data collection

of this thesis, even though the data they contributed were in the end not used

in the final results.

Lastly, I want to express my profound gratitude to my patient and loving wife,

Ragnhild, who has given me constant support and encouragement, especially

during the final months of completion of this thesis.

3

Contents

Acronyms 10

1 Introduction 11

1.1 Motivation . 11

1.2 Problem statement . 14

1.3 Thesis structure . 15

2 Background 16

2.1 Tracking and monitoring physical effort 16

2.1.1 Heart rate as a method for tracking physical effort 17

2.1.2 Speed as a method for tracking physical effort 19

2.1.3 Power as a method for tracking physical effort 20

2.2 Breathing . 20

2.2.1 Spirometry . 22

2.2.2 Respiratory inductive plethysmography 22

2.3 Predictive models . 23

2.3.1 Basics of deep learning and neural networks 24

2.3.2 Convolutional neural networks 28

2.3.3 Recurrent neural networks 32

2.3.4 Model selection and evaluation 34

4

2.3.5 Scaling . 36

2.4 Relevant work . 36

3 Methods 40

3.1 Data acquisition . 40

3.2 Preprocessing . 48

3.3 Building predictive models . 51

3.4 Implementation . 53

3.4.1 Software for data acquisition 53

3.4.2 Supporting Software . 54

3.4.3 Tools for structuring experiments 56

4 Results 58

4.1 Data acquisition and data quality 58

4.2 Network architectures . 61

4.3 Feature selection . 63

4.4 History size . 66

4.5 Neural network hyperparameters 67

4.6 Evaluation on test set . 68

4.7 Limitations and threats to validity 74

5 Conclusion and future work 77

5.1 Conclusion . 77

5.2 Future work . 78

6 Appendix A: Testing models on data from other subjects 80

5

List of Figures

2.1 Sensors used for physical activity tracking. 18

2.2 Speed and heart rate during a workout, where the heart rate

exhibits cardiovascular drift. The workout was conducted on a

treadmill with constant speed of 7.9 kph and an incline of 15%. . 19

2.3 Examples of exercise machines. 21

2.4 Schematic neural network. The circles represent nodes, and the

colors indicate what layer they are a part of: Grey means input

layer, white means hidden layer and black means output layer.

The arrows show that all nodes of one layer is connected to each

of the nodes in the next layer; i. e. we have only fully connected

layers. 25

2.5 Diagram showing the principle of how filters are applied to an

input matrix in a convolutional layer. 29

2.6 An example of a typical CNN architecture. 30

2.7 A convolutional network with 1D convolutional layers. The net-

work also includes fully connected layers after the convolutional

layer, and a single output value is returned from the network. . . 31

2.8 Max pooling with a 2 × 2 filter and a stride of 2. 32

2.9 Conceptual diagram of an RNN. Left: Compact representation.

Right: Unrolled representation. 33

2.10 LSTM cell . 34

3.1 Overview of the complete data flow, from data acquisition to

finished predictive model. 41

3.2 The FLOW sensor from SweetZpot. 42

6

3.3 Placement of RIP Flow sensors. 43

3.4 The Wahoo Tickr heart rate monitor. 44

3.5 The Concept2 BikeErg stationary bike. 45

3.6 Experimental setup of the data collection, where the subject per-

forms a workout on a stationary bike. The subject is wearing a

heart rate monitor and two RIP sensors (not visible in the image). 46

3.7 Examples from each of the three main categories of workouts

performed in the data collection. Each of the plots has a red

line representing the planned workout structure, to give a clear

indication of what type of workout it is. The blue line represent

the actual power output during the workout. (a) Steady-state

effort at approximately 200 W. (b) High intensity intervals at

300 W. Interval length was 5 min, 3 min and 4 min, with 2

minute breaks in between. (c) Ramp workout. 5 min at 100 W,

5 min at 150 W, 4 min at 200 W, 3 min at 250 W, 2 min at 300

W and finally 1 min at 350 W. 47

3.8 The process of matching an input sequence to a target value. . . 51

3.9 An example of how the error typically behaves during training.

In the beginning, the error decreases as the epochs accumulate

for both training and validation data. At a certain point, the

model starts to become overfitted to the training data, and the

error on unseen data from the validation set increases. 53

3.10 Overview of the data flow in our data acquisition tool. 54

3.11 Screenshot from the web application used to collect data. 55

3.12 This diagram presents how experiments are executed with DVC.

The gray background specify parts of the code that stay un-

changed. The green background specify parts that are adjus-

ted between experiments. Blue arrows indicate that data can be

fetched from or put in cache, in order to save computation time. 57

4.1 Sample workout, showing (a) RIP signal from the rib cage, (b)

RIP signal from the abdomen, (c) heart rate and (d) power output. 59

4.2 The distribution over power values in the training data set. . . . 60

4.3 The distribution over power values in the test data set. 61

4.4 The three network architectures used for producing our predictive

models. 63

7

4.5 The MSE and R2 score as a function of history size. 66

4.6 The MSE as a function of number of filter size in the CNN net-

work, when using feature set 6. The history size was in set to

100. 67

4.7 The MSE as a function of number of hidden units in the LSTM

network, when using feature set 3. The history size was set to 100. 68

4.8 Prediction of power output on an interval workout from the test

set, using DNN architecture on feature set 3. MAPE: 0.23. . . . 70

4.9 Prediction of power output on an interval workout from the test

set, using CNN architecture on feature set 6. MAPE: 0.20. . . . 71

4.10 Prediction of power output on an interval workout from the test

set, using LSTM architecture on feature set 3. MAPE: 0.22. . . . 72

4.11 Prediction of power output on an interval workout from the test

set, using CNN architecture on feature set 10. MAPE: 0.24. . . . 73

4.12 Prediction of power output on an interval workout from the test

set, using DNN architecture on heart rate. MAPE: 0.22. 74

6.1 Prediction of power output on an interval workout from the test

set, using DNN architecture and feature set 3. 81

6.2 Prediction of power output on an interval workout from the test

set, using CNN architecture and feature set 6. 82

6.3 Prediction of power output on an interval workout from the test

set, using LSTM architecture and feature set 3. 82

6.4 Prediction of power output on an interval workout from the test

set, using CNN architecture and feature set 10. 83

6.5 Prediction of power output on an interval workout from the test

set, using DNN architecture and feature set 11. 83

8

List of Tables

3.1 The three main categories of workouts performed during data

collection. 45

3.2 Features engineered from the raw data 50

3.3 An overview of the various parameters that define the neural

network architectures. 52

4.1 Descriptive statistics for the training and test data set. 62

4.2 Overview over the predictor variables used in the various models.

The feature set number corresponds to the feature set number in

table 4.3. 64

4.3 Error metrics indicating the performance of the predictive models

when testing various input features. History size was set to 100

time steps. 65

4.4 A summary of the optimal variables for each of the three network

types. 69

4.5 Error metrics for final models when evaluated on the test data

set. The hyperparameters shown in table 4.4 was used. 69

6.1 Error metrics for final models when evaluted on a test data set

collected from other subjects. The hyperparameters shown in

Table 4.4 was used. 81

9

Acronyms

CNN Convolutional neural network.

DNN Dense neural network.

LSTM Long short-term memory; a type of neural network.

MAPE Mean absolute percentage error.

MSE Mean squared error.

RIP Respiratory inductive plethysmography.

10

Chapter 1

Introduction

1.1 Motivation

The motivation behind this thesis starts at the intersection of health and tech-

nology. Through science we gain increasing insights to how our bodies work,

and which stimuli are needed to make it function optimally. We know that

regular physical activity is needed to keep our bodies healthy and operative,

and physical inactivity is a major contributor to non-communicable diseases on

a global scale[1]. Physical inactivity was in fact listed as the fourth leading risk

factor by the World Health Organization in 2009[2]. At the same time, many

modern jobs are mainly sedentary, and the act of being physically active in daily

life needs to be a conscious effort. In earlier parts of human history, we were

forced to use our bodies frequently, because our bodies was our main means

of transportation, and in general we were more dependent on physical labour.

In modern society, the advancement of technology has enabled more and more

things to be automated and handled by machines. We do not need to walk,

because we have cars, trains and elevators. Jobs requiring hard physical labour

are made more effective by using machines (gas, steam and electric engines)

that do the heavy lifting for us. Although utilizing technological advancements

to increase productivity and efficiency, it has a clear downside: We no longer

get the natural physical stimuli through daily life that our bodies need to stay

healthy.

Technology has not only caused a decrease in the need for general physical

activity, but it has also enabled us to make a wide range of sensors that can

monitor human activity[3]. These can be compact in size and easily embedded

into portable devices, and make it possible to measure several variables while we

are on the move. Examples include smartphones and smartwatches, which can

11

use accelerometers[4], magnetometers[5] and gyroscopes[6] to track the physical

movements of a person carrying such a device.

The use of activity tracking devices is not only commonly used through the ubi-

quitousness of smartphones, but it is especially prevalent in competitive sports.

This goes for both amateurs and professionals. Athletes monitor their training

in order to keep track of their performance, and it is a valuable tool for coaches

that oversee the progress of an athlete. In modern times, the practice of quan-

tified training monitoring started in the 1930s when interval workouts were

introduced as a training methodology[7], which involves alternating between

high intensity bouts of activity and active or passive rest periods. Both speed

and heart rate were from the beginning commonly used as the guiding measure

of intensity in these types of workouts, and these methods are still common

today[7].

Heart rate monitors are particularly popular as activity tracking devices, and

the first wireless ECG-based heart rate monitors produced for the general public

came from the company Polar Electro Oy in 1983[8]. This type of sensor meas-

ures the frequency of the heart beat, and is one of the most common methods

for tracking exercise intensity[9]. One of the challenges with heart rate as a

measure of physical effort is cardiovascular drift. This is a phenomenon where

the heart rate increases during prolonged exercise, even though the workload

remains more or less unchanged[10]. Measurement of speed during exercise is

also a common form of tracking physical activity, specifically in sports that in-

volve moving across a distance. However, it fails to give a fair representation of

the intensity when we have external factors such as varying terrain, surface and

weather.

Power meters are another type of activity trackers that are used to monitor and

control physical activity. In contrast to heart rate monitors, which measure the

bodily response of physical activity, power meters measure actual force applied

by a person on some sensor. These devices have been used for a long time in the

sport of road cycling. Measuring power output may be regarded as one of the

most direct methods of measuring physical effort during exercise[11]. Despite

giving a very accurate representation of the work done while exercising, power

meters have largely been exclusively used in cycling, in addition to activities

that involve stationary ergometers. The dynamics of the bike makes it easy

to place a sensor inside the system of propulsion, often in the pedals or the

crank. This type of sensor usually consist of a set of strain gauges, and the

deformation of these is proportional to the torque created by the cyclist[12].

The force applied by the cyclist can thus be measured close to the contact

point between the rider and the system he or she applies the force on. In

other common endurance sports, such as running, rowing, cross-country skiing

or swimming, the contact points between a person and the environment do not

12

provide an interface where it is trivial to embed a force sensor. An exception

to this exists in the case of exercise ergometers, for example stationary bicycles

(e.g. Concept2 BikeErg1), indoor rowing machines (e.g. Concept2 RowErg2),

ellipticals (e.g. Technogym Syncro Forma3), or skiing machines (e.g. Concept2

RowErg4). These type of contraptions often contain an ergometer, which is

equipment for measuring the work performed by the person using the machine.

Ergometers usually consists of a flywheel that can be rotated by a mechanical

drivetrain, connected to for example a set of bike pedals. The flywheel has a

resistive load, which can be provided by a friction belt or air resistance, and

the power output is calculated from the resistive load and the movement of the

flywheel.[13][14]. While ergometers can be used to measure power output, they

are restricted to stationary use, usually indoors.

The aforementioned methods of activity tracking each have their weaknesses.

The monitoring of heart rate attempts to quantify the intensity of exercise,

but suffers from cardiovascular drift. Speed is only applicable in contexts with

stable external conditions. Direct measurements of power output requires an

embedded sensor in the system of propulsion, or stationary equipment in the

form of exercise ergometers.

Because of this, we turn to a largely unexplored variable in the context of activity

tracking in fitness and sports: Breathing. The act of moving air in and out of

the lungs is vital for supplying the body with oxygen, which it uses to produce

energy. Breathing is thus fundamentally connected to physical activity, and it is

a metric that is applicable in any form of physical exercise. Exercise spirometry

is a typical method for measuring ventilation, and is based on measuring the

flow of air through a tube held in the mouth[15][16]. However, this is unsuitable

for use in the field, since the equipment involved is not easily portable. A

non-invasive, portable method of recording breathing is respiratory inductive

plethysmopgrahy (RIP). This method measures the expansion and contraction

of the chest and abdomen, by the use of straps or wires worn around the upper

body. Breathing variables have previously been suggested as a possible metric

for activity tracking[17], and a review by Gastinger et. al. concluded that

devices such as RIP sensors increases the potential of ventilation as a measure

of energy expenditure[18].

The objective of this thesis is to estimate the physical effort of a person exer-

cising based in the person’s breathing, or more specifically: Estimate the power

output during exercise based on RIP signals. We choose power output as our

target because of its direct relationship to the actual physical effort. As men-

1Product webpage: https://www.concept2.com/bikeerg/concept2-bikeerg
2Product webpage: https://www.concept2.com/indoor-rowers
3Product webpage: https://www.technogym.com/int/products/home-wellness/

cross-trainers.html
4Product webpage: https://www.concept2.com/skierg

13

tioned previously, it is not always trivial to measure the actual power output

during exercise for an arbitrary activity form. Some exercise forms, especially

team sports and ball sports, are complex and are often not characterized by con-

tinuous movement of the body. The sport might involve many different types of

movements, and also interruptions or periods of inactivity. In such cases it will

be challenging to obtain meaningful measurements of power. Because of this, we

want to focus our efforts on activities that involve continuous repetitive move-

ments, where the power output is uninterrupted throughout the duration of the

activity or workout. Cycling is such an activity, and is a form of movement that

is commonly used in studies of physical activity[11][19][20][21]. Because of this,

we have chosen to focus our efforts on data collected during cycling.

In the following section we will expand and specify what our goal is and which

research questions we aim to answer in this thesis.

1.2 Problem statement

The idea that sparked the inspiration of this thesis was: Can we use breathing

to predict physical effort? From this idea, we formulated a series of research

questions (RQs):

• RQ1: How can we acquire the data necessary to estimate power output

from breathing?

• RQ2: How can we build a predictive model to estimate power output

from breathing?

• RQ3: What machine learning architectures are effective in estimating

power output from breathing?

• RQ4: What features of breathing data are useful for estimating power

output from breathing?

• RQ5: What is the effectiveness of estimating power output from breath-

ing?

• RQ6: What are the limitations of estimating power output from breath-

ing?

To summarize, we want to create a system for estimating power output during

exercise based on measurements during breathing, and evaluate the performance

and useability of such a system. Although breathing, and more specifically

respiratory inductive plethysmopgrahy, is our main input variable for obtaining

14

an estimation of power output, we also investigate whether the use of heart rate

as an additional input variable can improve the performance of our predictive

models.

1.3 Thesis structure

Background

The background material necessary to understand the contents of this thesis

is presented in Chapter 2. We will explore the existing methods for tracking

and monitoring of physical effort, and explain the mechanisms behind our chosen

procedures for this thesis. Furthermore, we introduce the theory behind predict-

ive models, and specifically the techniques of various types of neural networks.

We also discuss related work and research.

Methods

In Chapter 3 we present the methodology followed in our project. We give an

account of which data we acquired and how they were acquired. The machine

learning methodology will be explained in detail, together with the procedure

of model selection and tuning.

Results

The results are presented in Chapter 4, where we show and discuss the final

architectures of our neural networks in addition to performance scores for the

various models.

Conclusion and future work

Finally, we summarize the thesis and give our perspective on future works in

Chapter 5.

15

Chapter 2

Background

This chapter presents the theoretical background of the methods we have used

to produce our results. Section 2.1 is devoted to the topic of tracking and

monitoring physical effort during exercise. We will review the state-of-the-art

methods used by both non-athletes and in professional sports. In Section 2.2

we discuss what breathing is and how it can be measured. We describe methods

for measuring and recording various aspects of breathing. Section 2.3 contains

an account of how collected data can be used to create models for prediction.

We give an outline of the concept of machine learning, and go into detail on

how deep learning and neural networks can be used to learn a representation

from a data set. In Section 2.4 we review related work and research.

2.1 Tracking and monitoring physical effort

Physical activity may be broadly defined as “all bodily actions produced by the

contraction of skeletal muscle that increase energy expenditure above a basal

level”[22]. This definition includes also static activity[22], since skeletal mus-

cular contractions can be both concentric, eccentric and isometric[23]. Within

the scope of this thesis, we are mainly concerned with the activity taking place

during exercise, which can be viewed as a subset of physical activity. The char-

acteristics of exercise may be defined as “planned, structured, and repetitive

bodily movement” where the objective is to “improve or maintain physical fit-

ness components”[24]. With these definitions at hand, we are ready to discuss

what we mean by physical effort. Simply put, we are talking about how hard

a person is working during physical activity, which may overlap with the term

exercise intensity. However, many aspects of physical activity can be monitored

in order to give an indication of the effort or intensity, and we need to clearly

16

define the term to be able to make measurements of it. Jeukendrup and Diemen

suggest that exercise intensity should be determined as “the amount of ATP that

is hydrolysed and converted into mechanical energy each minute”[11], and that

the best definition would be “the amount of energy expended per minute to per-

form a certain task”[11], measured in kJ/min. This definition is close to core of

what we mean by physical effort, and it ties into how we define physical activity

as an increase of energy expenditure. However, it is in general very challenging

and expensive to measure the energy expenditure directly[25]. An alternative

to direct measurements is to do measurements of variables that are related to

the energy expenditure. The ideal measure of energy expenditure or physical

effort should closely represent how hard a person is exercising, and at the same

time be easy to track in real time, also in field tests. This means that a portable

solution, which can be worn and carried on the body, would be preferable.

Existing methods of measuring physical effort typically fall into one of two cat-

egories: 1) Movement sensors and 2) physiologic sensors[9]. Examples of move-

ment sensors are pedometers (step counters), accelerometers and GPS-systems.

Physiologic sensors include heart rate monitors and temperature monitors, as

well as measurements of blood glucose, oxygen saturation and lactate[9][26].

From such sensors, several measures of intensity or effort have been derived

and used for tracking activity and sports: Heart rate, percentage of maximal

heart rate, percentage of heart rate reserve, speed of movement, percentage of

VO2max, percentage of lactate threshold, percentage of ventilatory threshold

and power output[11]. We will in the following subsections review a few of

the most popular methods for using technological sensors to track and monitor

physical effort during exercise.

2.1.1 Heart rate as a method for tracking physical effort

One of the most common type of sensors for activity tracking is heart rate

monitors[29]. An example is shown in Figure 2.1a. This type of sensors meas-

ures the frequency of the heart’s contractions or beats, usually in the unit of

beats per minute. The sensor itself usually consists of two main parts: A belt

and an electronic chip. The belt has two ECG electrodes, which detect the

electromagnetic impulses from the heart beat. The belt is placed just beneath

the pectoral muscles. The chip can be integrated into the belt, or be a separate

device which clips onto the belt. While some heart rate monitors stores the

recorded data in the chip, it is more common that the chip wirelessly transmits

the data to a receiver, often a wrist-worn sports watch.

The measuring of heart rate has been very common during exercise[29]. It can

be used to prescribe and plan a certain training regimen, by assigning a target

heart rate for the subject to aim at during exercise[30]. Furthermore, heart

17

(a) Heart rate monitor

(b) GPS-watch (speed measurements)

(c) Power meter[27]

(d) Spirometer[28]

(e) RIP sensor

Figure 2.1: Sensors used for physical activity tracking.

18

30 40 50 60 70
time (min)

150

160

170
He

ar
t r

at
e

(b
pm

)

30 40 50 60 70
time (min)

7.5

8.0

Sp
ee

d
(k

ph
)

Figure 2.2: Speed and heart rate during a workout, where the heart rate exhibits

cardiovascular drift. The workout was conducted on a treadmill with constant

speed of 7.9 kph and an incline of 15%.

rate has been found to be moderately correlated to oxygen uptake (the rate

of oxygen consumption per kilogram of body weight) V̇O2 (mL · kg−1 · min−1)

during exercise[19], and because of this, heart rate monitors are very popular

to use as an indicator of the exercise intensity[9].

One of the most prominent problems with heart rate as a measure of physical ef-

fort is cardiovascular drift. This is a phenomenon where the heart rate increases

with time during prolonged exercise where the workload remains constant[10].

This means that using the heart rate alone for estimating exercise effort will

prove inaccurate for longer workouts, since the heart rate does not remain stable

even if the workload does. An example of cardiovascular drift is displayed in

Figure 2.2. The figure shows heart rate and speed from a selected portion of a

running workout, performed at a constant speed of 7.9 kilometer per hour (kph).

Even though the workload remains constant, the heart rate increases steadily

from below 150 beats per minute (bpm) to a maximum of 170 bpm during the

approximately 50 minutes of running.

2.1.2 Speed as a method for tracking physical effort

In activities where the main goal is to transport the body across a distance, it

is possible to use speed as a measure of the physical effort. Examples of such

activities include running, cycling, swimming, cross-country skiing and rowing.

In some cases, measuring speed can be done by simply recording the time it

takes to complete a certain distance. This is most common in swimming, which

usually takes place in a fixed-size pool of 25 or 50 meters, and also in track and

19

field running events, where race tracks are built after a standard of 400 meters

of length. In other outdoor sports, the use of body-worn GPS-trackers makes

it trivial to record speed during activity. GPS-trackers are often embedded in

wrist-worn watches, as shown in Figure 2.1b.

One of the challenges with speed as a measure of exercise intensity appears when

performing activities that take place on varying terrain or surfaces, or involving

external factors such as wind resistance. An example is outdoor cycling. During

uphills, the speed is low, even though the intensity might be high. In downhills

the speed is much higher than in the uphills, even though the rider might not

be working at all. During outdoor running, the speed can be very affected by

whether the running surface is an asphalt road or a technical trail. Because of

this, the speed itself will not represent the exercise intensity well.

2.1.3 Power as a method for tracking physical effort

Power has been suggested as ”the most direct indicator of exercise intensity”[11],

and in some studies, power output is treated as the equivalent of exercise

intensity[20]. Measuring power involves recording the actual effect of the work

performed by the muscles. This is not trivial in many sports, because it is

challenging to place sensors at the contact points between the body and the

environment which the body acts on. An exception is cycling, where a power

meter based on strain gauges can be placed inside the system of propulsion.

The strain gauges are used to calculate the torque created by the cyclist. They

can be placed in one of several places in the drivetrain of the bike, usually

in the pedals or the crank[12]. An example is shown in Figure 2.1c. Power

output can also easily be measured by indoor exercise machines, where an out-

side environment is replaced by mechanical resistance. These devices are often

equipped with ergometers, which can measure the work performed by a user.

When a person uses an exercise machine like this, they drive a flywheel with a

certain resistive load, and the movement of the flywheel and the magnitude of

the resistive load is used to calculate the power output. Examples of such ma-

chines include stationary bikes, rowing machines and elliptical trainers, which

are shown in Figure 2.3.

2.2 Breathing

Breathing is the act where a person moves air in and out of the lungs. The

process of inhalation and exhalation is essential for providing the body with the

vital oxygen it needs to stay alive. The oxygen is used for breaking chemical

bonds in the nutrients we digest, in order to create energy[32]. Breathing is

20

(a) Stationary bike (b) Rowing machine[31]

(c) Elliptical trainer

Figure 2.3: Examples of exercise machines.

21

intuitively linked to physical activity, as increased muscular work increases the

need for oxygen, which in turn leads to heavier breathing. A strong correlation

between energy expenditure and ventilation has been found, and suggests that

measurements of breathing can be used for estimating physical effort[18]. In the

following subsections we will review two methods of measuring breathing.

2.2.1 Spirometry

A common method for measuring pulmonary ventilation is exercise spirometry,

which involves using a mouthpiece that measures the airflow passing through

it[15][16]. An example is shown in Figure 2.1d. Various types of flowmeters

are used to find the tidal volume, which is the volume of air moved in and out

of the lungs during breathing. The measured signal during is normally flow or

volume[15]. Spirometry is among other things used for diagnostics, monitoring

of lung diseases and public health research[15]. Even though spirometry gives

accurate recordings of the airflow, it introduces some challenges. The equipment

used for measuring pulmonary airflow often increases the amount of dead space

(which is the volume of the inhaled air that does not take part in the gas ex-

change of the lungs)[16][21]. During physical exercise, the additional dead space

caused by wearing spirometry equipment has been found to increase the tidal

volume and decrease the respiration rate[21]. Increased resistance for the vent-

ilation has also been associated with decreased performance during exercise[33].

The use of spirometry and flowmeters also has the drawback of usually requiring

a stationary setup.

2.2.2 Respiratory inductive plethysmography

A non-invasive way of measuring respiration is respiratory inductive plethysmo-

graphy (RIP). This method involves measuring the expansion and contraction

of the upper body as a result of breathing. This is done by using two individual

straps or wires around the rib cage and abdomen, which record the variation in

the cross-sections of these two areas. The RIP signal is found to have a strong

relationship with the tidal volume measured by spirometry[34][35]. RIP has

also been studied in the specific context of exercise, and Caretti et. al. found

that the calibrated sum signal of dual RIP sensors “provided values statistically

similar to flowmeter values at work rates below 180 W”[36]. The same study

found that unintentional movement and slippage of the RIP bands could lead

to greater variability in the results[36].

One example of a modern device capable of recording respiratory inductive

plethysmography is a sensor called Flow [37], shown in Figure 2.1e. The Flow

22

sensor is the one we have used in this thesis to record RIP signals. The setup

and workings of this sensor is explained in Section 3.1.

2.3 Predictive models

Our aim for this thesis is to create a mapping between the RIP signals discussed

in Section 2.2.2, and power output, discussed in Section 2.1.3. In order to

build this mapping, we use predictive models, and in this section we describe

the theory behind creating such models. By predictive modelling, we mean

using collected data samples to create a model that can be used to predict

or estimate unknown outcome from unseen data samples. The techniques we

use to produce predictive models fall within a field of methods called machine

learning. Machine learning is the process where a computer algorithm improves

its performance automatically by adapting its parameters through experience.

It is considered a subfield of artificial intelligence, and there exists a multitude

of various algorithms that fall within the machine learning domain.

We will in this thesis deal exclusively with the branch of machine learning

called supervised learning. In supervised learning, we provide a machine learning

algorithm with two main components. The first of these is the input data,

often called predictors or features. This is the data that will be used to make

predictions or estimations. In our case, examples of predictors are heart rate and

RIP signals, which we will use to estimate physical effort. The other component

is the output data, often called targets or labels. These values are what we want

to obtain when using the input data to make estimations, which in our case are

the power output values. Several different supervised learning algorithms may

be used for this type of regression problem, which involves estimating a numeric

value of a continuous variable.

A potential challenge when working with machine learning is shortage of training

data. The algorithms performance hinges in part on sufficient quantity of well-

distributed data. A certain amount of examples is needed for the algorithm to

adjust correctly, but it is also important that the training data contains the same

distribution as the cases it will be tested for. Furthermore, if the training is of

poor quality, for example containing noise and errors, it will be more challenging

to uncover patterns in the data.

Several aspects need to be taken into account when choosing which algorithm

to use for a specific problem. We need to consider what type of data we are

studying, and what kind of structure it has. In this thesis we are dealing with

time series data, which may contain temporal dependencies between multiple

data samples and the target value. Because of this, we choose to focus on

two types of neural networks that can handle data with local dependencies

23

across multiple samples: Convolutional neural networks[38] and recurrent neural

networks[39]. In addition, we use a simple fully-connected neural network for

comparison.

In the following subsections we explain the basics of how neural networks func-

tion, and how they are used to learn representations from a data set. We look

at three main types of neural networks: Dense neural networks (DNN), convo-

lutional neural networks (CNN) and recurrent neural networks (RNN). DNNs

get a more detailed account, as they lay the foundation for the other types of

neural networks, while CNNs and RNNs are explained more concisely. We also

discuss metrics that can be used to evaluate the models, and how the data is

scaled before processed in the neural networks.

2.3.1 Basics of deep learning and neural networks

Artificial neural networks (ANN) is a type of machine learning technique that is

inspired by neuroscience and the neural network of the biological brain. There

exists several types of ANNs, and each is typically specialized to deal with a

certain type or structure of input data. In order to explain the inner workings

of ANNs, we will start by explaining how a fully-connected feedforward neural

network works.

A fully-connected feedforward neural network is the most basic type of ANN,

and sometimes referred to as a multilayer perceptron (MLP). The idea behind

such a network is to make an approximation of a function f . The network is

used to find a mapping between a target variable y and an input variable (or a

set of variables) x:

y = f(x; θ), (2.1)

where the parameters θ are learned when training the network. The network

consists of an input layer, one or several hidden layers, and an output layer.

Each of the layers consists of a number of nodes1 An illustration of an example

is shown in Figure 2.4. The grey circles represent the input layer, the white

circles are the hidden layers, and the black circle is the output. All nodes in

one layer have a direct connection to all nodes in the next layer, which is why

we label this type of network as fully-connected. The term feedforward means

that the data is passed in only one direction through the network. In some type

of the networks, we have a feedback loop where output is passed back into the

network, in which case we call them recurrent neural networks.

1Because of the original inspiration from biological neural networks, these nodes are some-

times referred to as neurons, but we will stick to the term node in this thesis.

24

Input layer Hidden layers Output layer

Figure 2.4: Schematic neural network. The circles represent nodes, and the

colors indicate what layer they are a part of: Grey means input layer, white

means hidden layer and black means output layer. The arrows show that all

nodes of one layer is connected to each of the nodes in the next layer; i. e. we

have only fully connected layers.

The number of layers in the network are sometimes referred to as the depth of

the model, and this is related to the term deep learning. Although there is no

strict definition of this term, we often use it when describing neural networks

with multiple hidden layers, for example the network shown in Figure 2.4.

The input layer represents the data samples’ entry point to the network. The

number of nodes in the input layer corresponds to the number of variables

per data sample. The last layer is called the output layer, and this is where we

obtain the predicted values after the network has processed the input data. The

layers between the input and output layer are called hidden layers. We will in

the following subsection discuss how data is processed in a simple feed-forward,

fully-connected neural network.

Feed-forward pass

The process of passing information from the input layer to the output layer is

called a feed-forward pass. We will first take a look at how the data is processed

from the first layer to the next. Let the first layer consist of n nodes, each

corresponding to a single input variable. Each node i in the first layer, passes

an input xi to all nodes in the subsequent layer. The connection between a

node in the first layer (subscript i) and a node in the second layer (subscript j)

25

also has a weight wi and a bias bi. The weights and biases are often called the

parameters of the model. During a feed-forward pass, each input from the first

layer is multiplied by the weight of this connection with the bias added. The

result is summed for all the inputs xi:

zj =
n−1
∑

i=0

wixi + bi (2.2)

The result zi is then evaluated by an activation function a:

a(zj) = aj , (2.3)

where aj becomes the output value from node j in the second layer. The value

aj is then used as input value to the next layer in the network.

When dealing with multiple input variables and multiple data samples, the

input data are formatted as an input matrix X, where the columns represent

the various predictors, and each row represents one data sample. Similarly, we

assemble the weights into a matrix W and the biases as a vector b. The output

al of a layer l the becomes

al = a (al−1Wl + bl) (2.4)

Here we assume that all layers have the same activation function a.

The initial values of the weights W between two layers are drawn from a uniform

distribution dependent on the number of nodes in the two connected layers:

W ∼ U

[

−
√

6
√
nj + nj+1

,

√
6

√
nj + nj+1

]

(2.5)

This initialization was suggested by Glorot & Bengio[40], and is called normal-

ized initialization or simply Glorot initialization. The quantities nj and nj+1

is the number of nodes in the two subsequent layers that are connected. The

initial values of the biases are often set to a small non-zero value in order to

ensure activation, but can also be set to zero initially.

Activation functions

The activation function has a great effect on the performance of the model, and

many different options may be chosen. The choice depends on what data we

26

want to process, what network architecture we are using, how the data is scaled

and whether we are doing classification or regression. The activation function

does not necessarily have to be the same for all neurons or all layers in the

network.

Some of the common choices for activation functions include the sigmoid func-

tion, the tanh-function and the Rectified Linear Unit (ReLU). The latter is often

a default choice for neural networks, since they are easy to optimize and does

not saturate for large values[41]. ReLU is defined as:

ReLU =

{

0 if x < 0

x if x ≥ 0
(2.6)

This is the function we have used for all layers in the networks used in this

thesis.

Backpropagation and gradient descent

When the feed-forward pass is done, the output layer contains the predicted

values based on the input data. The next step in the process is to compare

these predicted values to the true targets of the training data samples. Based

on this comparison, the weights and biases will be adjusted in order to improve

the performance. As mentioned previously, the weights and biases are randomly

initialized, which means that the first feed-forward passes most likely will give

a result with large errors. Each of the feed-forward passes is called an epoch,

and the number of epochs is adjusted according to how much training the net-

work need in order to give adequate results. The adjustment process of the

weights and biases is called backpropagation, which was introduced in 1985 by

Rumelhart et. al.[42]. The backpropagation algorithm is a method for auto-

matically compute the error gradient of the network, and these gradients are

used to adjust the weights and biases.

The output values of the network ŷ are compared with the true targets y by

using a cost function C. This cost function is the formula we use to measure how

well the network performs, and our aim is to minimize the overall cost for all the

samples in the training set. When the gradients of the parameters are computed,

the parameters are updated accordingly. A learning rate η specifies how large the

update of weights and biases should be for each epoch. This type of technique

is called gradient descent. Usually the weights and biases are updated based on

only a subset of the training data, in contrast to computing the gradients for the

complete data set at once. This method is called stochastic gradient descent [41].

In practice, a minibatch of samples from the training data is randomly selected

27

for each epoch, and used for updating the weights and biases. This has an

obvious advantage because it is much computationally cheaper to perform one

epoch. It also has a regularizing effect by bringing stochastisity into the learning

process[41]. The learning rate largely affects the performance of the network,

and one way to further optimize the gradient descent is to use an adaptive

learning rate. Kingma and Ba have suggested an optimization technique called

Adam[43], which adapts the learning rate individually per parameter instead of

using a fixed learning rate for the whole learning process.

Dropout layers

One technique for regularizing the training of the neural network is called dro-

pout layers[41]. In the dropout layer, random input units are set to zero. The

frequency of nodes set to zero is specified as a control parameter of the dropout

layer. This method helps combat overfitting[44].

2.3.2 Convolutional neural networks

Convolutional neural networks (CNNs)[38] are another type of feed-forward

neural network that consist of so-called convolutional layers. In contrast to

fully-connected neural networks, the nodes of a layer in a CNN is only connec-

ted to a small number of nodes in the preceding layer. These types of networks

are suited for processing data samples in a grid pattern, such as an image or

a time-series with a fixed sequence size. A convolutional neural network often

consists of three categories of layers: Convolutional layers, pooling layers, and

fully connected layers. The latter has already been explained above, and the

former two will be explained below.

Convolutional layers

A convolutional layer is made up by a set of filters (sometimes referred to as

kernels). These filters are repeatedly applied across values of the input, and

results in another matrix, which is often called a feature map. The values of

the feature map are produced by applying a mathematical operation called

convolution on the filter and the values of the input matrix that the filter cover.

Let us say our input matrix is called X and our filter K. Our feature map S

can be calculated by[41]:

S[i, j] = X ∗K =
∑

m

∑

n

X[i−m, j − n]K(m,n), (2.7)

28

Filter Input matrix Feature map

Figure 2.5: Diagram showing the principle of how filters are applied to an input

matrix in a convolutional layer.

where i and j denotes the indices of our input matrix X, and m and n are the

indices of the filter matrix K. The symbol ∗ is often used to indicate convolution.

This formula is used to compute the complete feature map for a given filter, and

a simplified diagram of the process is shown in Figure 2.5. In the case of CNN, it

is the values in each filter which are the learnable parameters, and the learning

process adapts the values of the filters in order to optimize the performance of

the model.

The receptive field of a node is a term that describes the section of the input

which affects a given node in the network. The filter size will affect this, and a

larger filter size will result in a larger receptive field. Furthermore, values of the

feature map are not necessarily computed for each location in the input matrix.

A hyperparameter called stride controls how many steps the filter should move

between each convolution. A greater stride will lead to fewer values in the

feature map, i.e. a smaller feature map. Usually one applies multiple filters in

each convolutional layer, which means that each layer produces multiple feature

maps.

A key element to the convolutional layers is that all filters are used in multiple

locations across the input, a property called parameter sharing [41]. While a fully

connected neural network has separate parameters for each of the connections

between all nodes, CNNs can detect a feature in any location in the input by

using only one filter.

A typical example of a complete CNN architecture can be seen in Figure 2.6. The

pooling layers will be explained in Section 2.3.2. The role of the fully connected

layers is to map features extracted through convolutional and pooling layers to

a given output.

29

Input Convolution Convolution Pooling Pooling Fully connected

Figure 2.6: An example of a typical CNN architecture.

1D convolutional layers

The traditional way of using convolutional layers, as described in the previous

section, can be adapted to work for time series data. In a normal convolutional

layer, the filter is applied along two axis of the input data, and is therefore

sometimes referred to as two-dimensional convolutional layers. This enables the

network to learn spatial dependencies across both axis of the input matrix. In

our case, where we deal with time series data, we are only interested in the

dependencies along one axis, namely the temporal axis. Figure 2.7 shows a

diagram of how a CNN with convolutional 1D layers looks like. In the example

presented in Figure 2.7, there are three input features, and the filter covers three

time steps. The convolutional filters produce 1D feature maps, which end up

being processed through fully connected layers, and in the end give a single value

as output. This figure is a close representation of the CNNs used to produce

models in this thesis, with a singular output value.

Pooling

A common practice is to insert so-called pooling layers in-between convolutional

layers. The pooling layers is meant to diminish the spatial size of the data. This

is advantageous both because it reduces the amount of parameters needed to

be processed, and it increases the invariance of the layer, in regards to minor

translations in the input data[41]. The translational invariance means that the

output from the pooling layers will not be affected by small changes in the input

data. The pooling layers will help prevent overfitting to the training data.

To demonstrate how pooling works, take a look at Figure 2.8. In this case we

use a filter of size of 2×2, and a stride of 2. The input matrix is on the left side

of the figure, and has a size of 4 × 4. The filter is placed on four locations on

the input matrix, shown in four different colors in the figure. There are several

types of pooling operations, and in this case we use max pooling, which means

that the output becomes the maximum value of all the values covered by the

filter in the input matrix. The result of the pooling operation can be seen in the

right matrix of the figure. An alternative to max pooling is average pooling, in

30

Time
steps

Features

Input data Convolutional
filters and

feature maps

Fully connected
layers Output

Figure 2.7: A convolutional network with 1D convolutional layers. The network

also includes fully connected layers after the convolutional layer, and a single

output value is returned from the network.

31

1 3

5 6

3 3

8 4

5 7

3 2

4 9

1 2

6 8

7 9

Max
pooling

Figure 2.8: Max pooling with a 2 × 2 filter and a stride of 2.

which case the output becomes the average of all values covered by the filter.

In contrast to normal layers in a neural network, a pooling layer does not consist

of any parameters, but is solely defined by the process it performs on the input

data.

2.3.3 Recurrent neural networks

A third type of neural networks is recurrent neural networks (RNNs)[39]. They

are designed to work with sequential data. The special characteristic of an

RNN is that it processes the input data sequentially, and that the output of

a previous step is used as input to the next step. This enables the network

to “remember” information from previous steps, which can be used to identify

temporally dependent features in an input sequence. An RNN consists of a

series of hidden units, which is analogous to the nodes or neurons of other types

of neural networks.

Let us define an input sequence x1, x2, ...xt, ..., xτ , where t indicates the time

step. The internal state, often called the hidden state, of the RNN is ht. A

general equation for computing a state in an RNN is[41]:

ht = f(ht−1, xt), (2.8)

where ht−1 represents the old state, ht represents the new state, xt is our input of

the current time step, and f is a transition function. The input to a hidden unit

is also multiplied by weights W and has added bias to it, as in a fully connected

neural network. The transition function serves as an activation function, and

are often chosen to be the function tanh(x) or the sigmoid function, given by:

σ(x) =
1

1 + e−x
. (2.9)

If we use the sigmoid function, the computation of the hidden state ht in a plain

RNN then becomes

32

xt

yt

RNN

x1 x2 x3

y1 y2 y3

h1 h2 h3h0

Figure 2.9: Conceptual diagram of an RNN. Left: Compact representation.

Right: Unrolled representation.

ht = σ(Whht−1 + Wxxt + bh), (2.10)

where Wh is the weight for the hidden state, Wx is the weight for the input and

bh is the bias.

A simplified diagram of the forward pass through a recurrent neural network is

shown in Figure 2.9. In this example, all hidden units produce an output yt,

but in cases where only a single output value is needed, the output is computed

only for the last unit. The parameters of the model are trained using gradient

descent.

Plain RNNs suffer from what is called the vanishing gradient problem, which was

discovered in the early 1990s[45][46][47]. When training an RNN on sequences,

the unrolled network can become very deep, similarly to a DNN with many

layers. The problem arises when the gradients become increasingly small when

propagating the parameter updates back through the network, and the updates

become so small that, in effect, the network stops learning. One possible solution

for dealing with the vanishing gradient problem is the Long short-term memory

network, which will be discussed in the following section.

Long short-term memory (LSTM) network

A special type of RNN is the Long short-term memory (LSTM) network, which

was proposed in 1997 by Hochreiter and Schmidhuber[48]. A hidden unit in an

LSTM network is often called cell. This cell has four additional components

compared to a hidden unit in a plain RNN: A cell state c, an input gate, an

output gate, and a forget gate. The architecture of an LSTM cell is presented in

33

+ +

* +

tanh

ct-1 ct

ht-1

xt

ht

σ σ σtanh

Forget gate Input gate Output gate

Figure 2.10: LSTM cell

Figure 2.10. The cell state enables the network to retain information over longer

spans. The three gates are essentially learnable weights. The input gate controls

which information should be added to the cell state. The forget gate controls

which information discarded from the cell state. The output gate controls the

output from the cell. Put simply, the gates of an LSTM unit enables the network

to learn which information it should remember and what it can discard. The

states of the LSTM cell are computed in a similar manner to Equation 2.10:

ft = σ(Wfht−1 + Wxxt + bf), (2.11)

it = σ(Wiht−1 + Wxxt + bi), (2.12)

ot = σ(Woht−1 + Wxxt + bo), (2.13)

where ft, it and ot are the states of the forget, input and output gates respect-

ively. The LSTM cell structure enables the gradients to be preserved for a longer

sequences, and mitigates the problem of vanishing gradients[41].

2.3.4 Model selection and evaluation

In order to evaluate a trained model’s performance, we test it on a set of data

samples that was not used in training. Thus we divide the data set into a

training data set and a test data set. After training is complete, the input data

of the test set is passed through the trained model, and the output is compared

against the true values. The true values are often called the ground truth. The

34

comparison of the predicted and the true output is done according to the metrics

described below.

Many learning algorithms involve the use of hyperparameters, which control how

the learning process is performed. This could for example be the learning rate,

number of nodes in each layer, dropout rate, batch size and number of epochs.

These hyperparameters are not a part of the parameters that are adapted in the

training process, but need to be tuned to obtain optimal model performance.

Metrics

In order to assess the quality of the predictive models, we need to define metrics

that can quantify how well the models perform. For the models in this thesis,

we use three different metrics to evaluate the performance of the model. The

first metric is one of the most common evaluation criteria for regression models,

the mean squared error (MSE)[41]:

MSE =
1

n

n
∑

i=1

(ŷi − yi)
2. (2.14)

In this equation, ŷ represents the predicted output values and y is the actual

output values. The index i runs from 1 and up to n, which is the number of

samples. The MSE will decrease as the difference between predictions and the

ground truth becomes smaller, and we desire the resulting number to be as small

as possible. Squaring the difference between predicted and true values means

that we always will get a positive number. It also has the effect that large

differences in yi and ŷi will have more significance than smaller differences.

The second evaluation metric we use is the coefficient of determination, often

denoted R2. This score is calculated by the following equation[49]:

R2 = 1 −
∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ȳ)2

, (2.15)

where ȳ is

ȳ =
1

n

n
∑

i=1

yi, (2.16)

i.e. the mean of the true values. Explained in words, the R2 score is the

residual deviance divided by the total deviance, subtracted from 1. It gives us

35

an indication of the ratio between the total variance explained by the model,

and the total variance. We desire an R2 score as close to 1 as possible.

The third metric is the mean absolute percentage error (MAPE), defined as

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

. (2.17)

The resulting fraction can be multiplied by 100 to give an average percentage

of the error in the model’s predictions. We use this metric to give an intuitive

measure of how well the models perform.

2.3.5 Scaling

When passing multiple input variables to a neural network, there is often a

need for scaling the variables first. This is because the various input variables

may have different orders of magnitude, and since the inputs will be combined

through the connections of the network, certain variables will have a greater

effect on the calculations of the gradients. Therefore it is a common heuristic

to scale or transform the input data[50]. There are several methods of scaling,

of which two were explored in this project.

Min-max scaling entails that the values are transformed such that the range

is from 0 to 1. To do this we use the maximum and minimum value of a variable,

denoted xmax and xmin, and the vector of scaled values x′ can be computed from

the original values x using the following equation:

x′ =
x− xmin

xmax − xmin

(2.18)

Another common method is standardization, where the mean µ is subtracted

from all values, so the new mean becomes zero, and then the values are divided

by the standard deviation (std), giving a variance of 1. The standardization

equation is as follows:

x′ =
x− µ

xmax − std
(2.19)

2.4 Relevant work

In Section 2.1, we reviewed some of the most common methods of measuring

physical effort during exercise. Cardiovascular drift is a weakness of heart rate

36

as an indicator of physical effort, and speed measurements suffers from the

inability to account for external factors such as terrain. While power output

measurement gives us a direct metric for physical effort, it is limited to activity

forms where one uses specialized equipment with embedded power meters or

ergometers. Breathing, as discussed in Section 2.2, is linked to physical effort,

and the advent of portable RIP sensors enables us to easily measure breathing

in a wide range of activities. As seen in section 2.3, deep learning has proven

useful for building predictive models that can process time series data, and

this is why we aim to explore the use of neural networks to predict physical

effort from breathing. In this section, we review some of the previous research

done regarding the relationship between breathing-related variables and physical

effort during exercise.

Arts and Kuipers studied in 1994 the relationship between power output, oxy-

gen uptake and heart rate[51]. They argue that even though maximal oxygen

uptake (V̇O2max) is considered an important indicator of physical performance,

it still has some limitations. One of these is that the performance of an athlete

is not only governed by the maximal oxygen uptake, and further training may

improve the performance in a specific sport despite no improvement in V̇O2max.

Furthermore, athletes of similar performance can still have significantly different

V̇O2max values. Because of this, maximal power output might be a preferable

measure, since it is more true to the actual work the athlete is performing. Dur-

ing exercise, athletes do not work at maximum capacity, and Arts and Kuipers

studied the relationship between power output and oxygen uptake at submax-

imal intensities, expressed as percentages of their respective maximum. They

gathered data from 53 male athletes, who performed an incremental maximal

test on an ergometer bike. The relationship between %Wmax (percentage of

maximal workload in watts) and %V̇O2max (percentage of maximal oxygen up-

take, measured in liters per minute) was found to be linear, with an correlation

coefficient of r = 0.98. The relationship between %Wmax and %HRmax (per-

centage of maximal heart rate, measured in beats per minute) was also found

to be linear, with a correlation coefficient of r = 0.97. This research relates

to this thesis, since it shows that oxygen uptake is strongly related to power

output during exercise, and supports the hypothesis that power output can be

predicted from variables connected to breathing.

Muniz-Pumares et. al. studied the relationship between oxygen uptake (V̇O2)

and power output during cycling. A total of 9 male cyclists performed two

workouts on a cycle ergometer, while oxygen uptake (V̇O2) and power output

were measured. One workout was a incremental test at submaximal intensities,

while the other was a maximal test to exhaustion. A strong linear correlation

(r = 0.953) was found between V̇O2 and power output.

Gastinger et. al. has done a thorough review of the case for using ventilation

37

as a representative measure of energy expenditure[18]. The study states that

while there exists a range of portable devices that estimate energy expenditure,

such as pedometers, accelerometers and heart rate monitors, these show signi-

ficant variability when it comes to accuracy of their estimations. The review

states that sensors based on respiratory inductive plethysmography estimate

tidal volume and ventilation reasonably well, which in turn can provide a port-

able, non-invasive way of estimating energy expenditure.

Indirect estimation of power output during exercise has been previously at-

tempted for cycling. Costa et. al. studied in 2017 the validity of a device

called PowerCal[52], which estimates the power output during cycling based

on heart rate. Even though heart rate monitors give information about the

exercise intensity, they can also be affected by other external factors, such as

temperature and dehydration. The PowerCal device uses only heart rate to

calculate the power output, based on a certain algorithm. The subjects were 21

well-trained male cyclists, who were put through an incremental test exercise

and three time-trial workouts, where the actual power output was measured by

a cycle ergometer, at the same time as the PowerCal device was used to es-

timate the power output based solely on recordings from a heart rate monitor.

During the time trials, the mean power output calculated by the PowerCal was

242 ± 28 W, which was significantly lower than the power output measured by

the ergometer, 282 ± 27 W. The mean power output over each kilometer was

from 5.8% to 23.4% larger on the ergometer compared to the PowerCal. The

researchers concluded that the power estimation based on heart rate calculated

by the PowerCal device was not reliable and under-estimated the actual power

output.

Hilmkil et. al. has previously applied deep learning to data from cyclists[53].

They used an LSTM neural network to train a model for predicting heart rate

response of a cyclist during a workout. A wide range of input variables was

used: Time (seconds), speed (km/h), distance (km), power (Watt), cadence

(pedal strokes/minute), power/weight (Watt/kg), altitude (meters) and heart

rate 30 seconds prior to the current time steps (beats per minute). A large data

set of 7541 training sessions from 15 male professional cyclists was used for this

study, where 5179 sessions from 10 of the cyclists where used for training. The

study concluded that the heart rate predicted by the trained model was very

close to the true heart rate, and that machine learning algorithms, especially

deep learning algorithms, are promising methods for applications on sports per-

formance data. Pfeiffer and Hohmann have also shown that neural networks

can be succesfully applied on training data[54].

We have previously investigated how airflow can be estimated from RIP signals,

in a project called DeepVentilation[55]. In that project, we applied deep learning

to RIP signals in order to predict minute ventilation, which is how many liters

38

of air a person moves in one minute. The work of DeepVentilation contributes

to the foundation of this thesis, since we have been able to reuse some of the

source code for processing the raw RIP signals. Additionally, we have made use

of similar neural network architectures for building our predictive models. To

the best of our knowledge, no research has attempted to estimate the power

output from respiratory inductive plethysmography. That is the contribution of

this thesis.

39

Chapter 3

Methods

The following chapter describes the experimental setup and procedures followed

in this thesis, with the goal of estimating power output from RIP signals. In

Section 3.1 we present the methods used for data acquisition, while in Section 3.2

we discuss how the preprocessing was done. Section 3.3 contains details on how

we built our predictive models. We also give some details of the implementation

and supporting software we used in Section 3.4. An overview of the main steps

of our methodology is shown in Figure 3.1.

3.1 Data acquisition

The data set is based on measurements recorded while a subject was in one of

two states: Either in activity or at rest. About 90% of the data samples were

collected while the subject was in activity, and more specifically performing a

cycling workout on a stationary bike. Cycling was chosen as the activity form

for several reasons. Firstly, it is easy to measure accurate power output, because

sensors can be placed inside the system on which the subject is exerting forces.

In this case, a stationary bike from Concept2 was used, which has an built-in

power meter. Further more, there are few or none external conditions that may

affect the experiments while cycling indoors on a stationary bike.

Four different variables were recorded during the data collection:

• RIP from rib cage, unit: millivolt (mV). Sampled at 10 Hz.

• RIP from abdomen, unit: millivolt (mV). Sampled at 10 Hz.

• Heart rate, unit: beats per minute (bpm). Sampled at 1 Hz.

40

Section 3.1: Data acquisition

JavaScript web application

RIP
ribcage

RIP
abdomen Heart rate Power

Sensors

Raw data set

Upsampling

Feature engineering

Splitting
training/validation set

Scaling

Divide into sequences

Training

Evaluating

Section 3.2: Preprocessing

Section 3.3: Building predictive models

Figure 3.1: Overview of the complete data flow, from data acquisition to finished

predictive model.

41

Figure 3.2: The FLOW sensor from SweetZpot.

• Power output, unit: Watt (W). Sampled at 1 Hz.

The three first variables are the basis for the predictors or input data, and the

last variable is used as the target value.

The subject of the data acquisition was a highly active adult male of age 25. At

the time of data collection the subject was an athlete competing in long-distance

running, and had experience from competitive road cycling. The data collection

sessions took place over a period of 7 months, between May 2020 and January

2021.

RIP sensors

The RIP data were collected using a product called Flow from the company

SweetZpot. The sensor weighs 27 grams and measures 77x43x17mm. An image

of the sensor is shown in Figure 3.2. It is powered by a Lithium battery of

3V. This sensor is fastened to a flexible belt that is worn around the chest or

abdomen, as shown in Figure 3.3. Movements of the chest or abdomen will give

increased strain on the belt, and this force is measured by a strain-gauge in

the sensor itself. The strain-gauge is made up by a Wheatstone bridge, where

variation in force will result in variation in resistance. The voltage over this

resistance is the output of the sensor, and the unit of the output is millivolt

(mV). The sensor samples the voltage at 10 Hz, and broadcasts the recorded

values using Bluetooth Low Energy (BLE). During data collection the subject

wore two of these sensors. One was placed such that the belt was lying directly

below the pectoral muscles, while the other was placed over the navel, with the

belt around the waist.

42

RIP ribcage chip

RIP abdomen chip Elastic straps

Figure 3.3: Placement of RIP Flow sensors.

Heart rate monitor

The heart rate data was collected using a Wahoo Tickr heart rate monitor,

shown in Figure 3.4. This sensor also broadcasts its recorded values over

Bluetooth. The Wahoo Tickr heart rate sensor weighs 17 grams and has di-

mensions of 65x37x10 mm. It is fastened to a flexible chest strap, which the

subject wears around the chest below the pectoral muscles, just below the upper

RIP sensor described above. The strap has two electrode pads which need to

be moistured before use in order to register the electric signals from the heart

beats. When the sensor itself is fastened to the belt, the heart rate can be trans-

mitted over Bluetooth Low Energy (BLE). The SweetZpot Flow sensors have

the option of recording both RIP data and heart rate, but when connecting to

both Bluetooth services on a Flow sensor at the same time, we experienced that

the two signals sometimes created a delay in delivering the data, which made

the timestamps inaccurate. Because of this, we chose to use a separate sensor

to record the heart rate.

Stationary bike and power meter

Power values were recorded directly from the stationary bike used in the exper-

iments. The bike is called BikeErg, produced by Concept2, and it broadcasts

all recorded values over Bluetooth. An image of the bike is shown in Figure

3.5. The pedals of the bike drives a chain connected to a flywheel. The power

measured by the BikeErg is based on the work done by the flywheel, which will

be different from the work done on the cranks of the bike because of drive trans-

mission power loss. A study performed by Boyas et. al. has shown that the

Concept2 ergometers underreport values by approximately 25 W[56]. However,

for our purposes it is more important that the power output values are precise,

43

Figure 3.4: The Wahoo Tickr heart rate monitor.

by which we mean that any given input power exerted by the subject on the

ergometer always gives the same power values calculated by the ergometer. A

slight underreporting of power values is therefore not an issue when building

predictive models for power output, since the relationships learned by a model

are valid independent of a shift in the target values.

The experimental setup for the data collection is shown in Figure 3.6. A picture

of a subject positioned on the bike and wearing all sensors can be seen in Figure

3.6.

Data collection during workouts

The workouts performed during data collection can be divided into three cat-

egories: Steady-state effort, high-intensity intervals and ramp structure. Table

3.1 contains the descriptions of the three different categories, and includes an

example workout for each of them.

The main idea behind these workouts was to imitate a typical workout routine

with a mixture of intensities and workout structures, in order to make a robust

data set with a wide distribution of power values. One of the aims of this project

was to create a model that can accurately estimate power output for arbitrary

workout intensities, and that is why a mixture of workouts was chosen instead

of some specific protocol.

44

Figure 3.5: The Concept2 BikeErg stationary bike.

Table 3.1: The three main categories of workouts performed during data collec-

tion.

Workout category Description Example

Steady-state

effort

Cycling at the same intensity

during the whole workout.

45 minutes easy cycling

at 180 W

High-intensity

intervals

Alternating between working

at a high and low intensity

for a fixed time or distance,

and repeating the alternation

a certain number of times.

4 × 4 minute on 350 W,

with a break of 2 minutes

Ramp

structure

Starting out at a low intensity,

and then incrementing the

intensity step-wise.

Starting at a power output

of 100 W, increase by 100 W

every 2. minute up to 500 W,

and then decrease by 100 W

every 2. minute, down to

100 W (pyramid workout).

45

Figure 3.6: Experimental setup of the data collection, where the subject per-

forms a workout on a stationary bike. The subject is wearing a heart rate

monitor and two RIP sensors (not visible in the image).

46

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

0
100
200
300
400

po
we

r (
W

)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

0
100
200
300
400

po
we

r (
W

)

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

0
100
200
300
400

po
we

r (
W

)

(c)

planned
actual

Figure 3.7: Examples from each of the three main categories of workouts per-

formed in the data collection. Each of the plots has a red line representing the

planned workout structure, to give a clear indication of what type of workout

it is. The blue line represent the actual power output during the workout. (a)

Steady-state effort at approximately 200 W. (b) High intensity intervals at 300

W. Interval length was 5 min, 3 min and 4 min, with 2 minute breaks in between.

(c) Ramp workout. 5 min at 100 W, 5 min at 150 W, 4 min at 200 W, 3 min

at 250 W, 2 min at 300 W and finally 1 min at 350 W.

47

Data collection during rest

Data was also collected when the subject was sedentary, and not performing

any physical activity. The subject was in this case wearing two RIP sensors

(around the rib cage and abdomen, respectively) and a heart rate monitor, but

no power output was measured. The power values were manually set to zero for

all time steps during this stage of the data collection, in order to provide data

samples that represented no physical activity.

3.2 Preprocessing

The raw data went through several preprocessing stages before being fed into

the machine learning algorithm. These stages are described below.

Upsampling

The heart and the power output were sampled at a lower rate than the RIP

data, and had to be upsampled in order that each variable were represented at

a time step of 0.1 second. The gaps were filled with the nearest measured value

in time.

Feature engineering

A feature is in this context a characteristic of the data set that is present in

all data samples, i.e. at each time step. During data collection we collected

three such features: Heart rate, RIP signal from the rib cage and RIP signal

from the abdomen. In order to improve the performance of the model, we also

made other features derived from the raw input features. While neural networks

are designed to learn features automatically, manually derived features tend to

be very important to facilitate the learning ability of the neural network, and

might reduce the need for a complex network architecture. Feature engineering

is also done to reduce the dimensionality of the problem. If the engineered

features prove to give valuable insight to the problem, the computational cost

of training models might decrease, since the algorithm will need less epochs to

reach a state were it can give accurate estimations.

A starting point for the feature engineering is what we intuitively know about

how breathing behaves during physical activity. When increasing the intensity

of a physical activity, we start to take deeper breaths and breathe at a higher

rate. Based on these observations, we included respiratory rate and depth of

48

breath into the features to be explored. The depth of breath was calculated

as the difference between the maxima and minima of the RIP signal within a

certain time window. We call this variable the range of the RIP signal. The

respiratory rate was calculated by finding peaks in the signal, and looking

at the distance between the peaks. The time gap tpeaks (measured in seconds)

between one peak and the next was used to calculate the corresponding respir-

ation rate R according to the following formula:

R =
1

tpeaks
· 60 (3.1)

We multiply by 60 to obtain the number of breaths per minute corresponding

to the current distance between breaths. The peaks were found using the SciPy

function find peaks()[57], which determines the indices of peaks based on a

certain distance and height from neighboring points. The accuracy of these

calculations depends on whether the found peaks actually represent maxima

in the breathing pattern, rather than noise from the RIP sensor. Breathing

patterns may also be jagged, and the maximum value of one respiration cycle

might not be easy to distinguish. Because of this, a smoothing was performed

on the calculated respiration rate time series, in order to give a rolling mean of

the computed values.

Another aspect of the RIP data we investigated was the gradient and slope of

the signal. A mundane way of describing this would be: How fast do we breath

in and out. There are several ways of representing this aspect of the data. One

way is to simply calculate the gradient f̂ of the signal f , which we did by using

the following formula, implemented in the Python framework NumPy[58]:

f̂t =
ft+1 − ft−1

2d
, (3.2)

where t represents the index of the current time step, and d is the distance

between each data sample of f .

Another way of representing how we draw our breath is to look at the slope of

the signal, θ. To calculate the slope θt at time step t, we use the formula:

θt = arctan

(

ft − ft−1

d

)

. (3.3)

Furthermore, we used a sine- and cosine-encoding of the slope, which means

that we actually computed two features from the slope. This gives us several

advantages. Firstly, if we had used only the slope degree itself, then the steepest

upward angle and steepest downward angle would be on opposite sides of the

49

Table 3.2: Features engineered from the raw data

Feature name Unit

Range of RIP rib cage signal mV

Range of RIP abdomen signal mV

Respiratory rate calculated from the RIP rib cage signal breaths/min

Respiratory rate calculated from the RIP abdomen signal breaths/min

Gradient of RIP from rib cage mV/s

Gradient of RIP from abdomen mV/s

Sine of the slope of RIP from rib cage radians

Cosine of the slope of RIP from rib cage radians

Sine of the slope of RIP from abdomen radians

Cosine of the slope of RIP from abdomen radians

spectrum. By using cos(θ), this value will keep a connection between the upward

and downward angles that are of similar absolute value. By using sin(θ), we

capture the other phase of the slope angle. All the engineered features are

summarized in table 3.2.

Splitting data into training, validation and test set

In our approach we divided the data into three categories: Training, validation

and test data. These data sets served different purposes during the development

of the machine learning models.

Out of the total 21 workouts in the data set, 4 were separated out as a test data

set, on which the final models would be evaluated. This test set was only used

once, after the final models were produced. This is important to note, because

the final evaluation score should reflect how the model performs on unseen data.

If a model is tuned further after having been evaluated on the test set, the model

is essentially biased towards this specific test set.

After having partitioned the test set, the remaining workouts were divided into

a training and a validation set, with a split of respectively 70% and 30%. The

training set was used to do the actual model fitting, while the validation set was

used to tune the architecture of the neural networks and all hyperparameters

defining the models.

The training set was further split during the training process, where 25% of the

training data was used to evaluate the model after each epoch. This provided

information on the model’s performance in relation to number of epochs, and let

us know when the model starts to become overfitted to the training data. When

the evaluation after each epoch starts to give deteriorating results, training can

be stopped.

50

Input features

TargetExample
window size

of 5 time
steps

Time
Input Target

Sample
1

Sample
2

Sample
3

Result:

Figure 3.8: The process of matching an input sequence to a target value.

Scaling

The input features were scaled in accordance with either the min-max scaling

or standardization outlined in Section 2.3.5. In general, these two methods of

scaling gave similar results during experimentation.

Dividing data into sequences

The data was divided into overlapping sequences of a certain size, which we

denote the history size, or s. Each sequence was matched to the power value

recorded at the last time step of the sequence. In practice, this would mean that

the last few seconds of recorded input data will be used to estimate the current

power output. Consecutive sequences overlapped with s − 1 samples (i.e. all

but one sample), in order to get the maximum number of input sequences from

the data set. Figure 3.8 shows a diagram of the process.

3.3 Building predictive models

Training and evaluating models

The neural networks were trained on the input sequences for a certain number

of epochs. In order to evaluate the models created during each experiment, we

ran the inputs of the validation set through the model, and compared the result

with the expected output. We used the Mean Squared Error, as described in

Equation 2.14, to get a concrete value of how the model performed. This MSE

51

Table 3.3: An overview of the various parameters that define the neural network

architectures.

DNN LSTM CNN

No. of layers No. of hidden units No. of convolutional layers

No. of nodes in each layer No. of nodes in each layer

Activation function Activation function

Kernel size

Dropout layers

Dropout rate

Pooling layers

No. of dense layers

No. of nodes in dense layers

score where then used to tune all parameters related to the model, as described

in the following sections.

Selecting features

The process of feature selection is based on continuous iteration over the differ-

ent possible configuration of input variables along with the various hyperpara-

meters and network architectures (described below). In order to optimize the

performance of the model, one has to try out a lot of various combinations. We

attempted to automate parts of this process using a tool called Keras Tuner[59],

which searches for an optimal configuration based on a defined set of variable

parameters. Even so, the search space is enormous, and we mainly had to rely

on the common trial-and-error method. While this type of manual work can be

slow, one can make use of domain knowledge and understanding of the meth-

ods to pick the features and parameters that are most likely to result in high

performance.

Tuning hyperparameters and models

Regarding the architecture of the neural networks, we had to find the optimal

configuration among several choices and control parameters.

The training process and result is also affected by how many epochs we run

during training. To control this, we used functionality from TensorFlow that

enables so-called early stopping [60]. The TensorFlow API allows us to set apart

a certain fraction of the training set during the training process, to monitor

the loss on unseen data for each epoch. This is called the validation loss, and

is evaluated at the end of each epoch. When the validation loss has failed to

52

Number of epochs

Er
ro

r
Training
Validation

Figure 3.9: An example of how the error typically behaves during training. In

the beginning, the error decreases as the epochs accumulate for both training

and validation data. At a certain point, the model starts to become overfitted to

the training data, and the error on unseen data from the validation set increases.

improve after a given number of epochs, training may be stopped, to reduce

the danger of overfitting to the training data. Typical behavior of the training

and validation loss is shown in Figure 3.9. One also has the option of saving

checkpoints of the model during training, so after training has stopped, one can

save the model which gave the lowest validation loss.

3.4 Implementation

In this section we present the implementation of the methodology discussed

above.

3.4.1 Software for data acquisition

In order to collect data from the four sensors mentioned above (two RIP sensors,

a heart rate monitor and the power meter on the bike), we developed our own,

specialized web application. All three sensor types have built-in functionality for

broadcasting the recorded values via Bluetooth, and so we connected the sensors

to our application using Web Bluetooth[61]. The application is implemented in

JavaScript, and runs entirely in the browser without a backend. The purpose

of this tool was to have a unified interface for all four sensors, with reliable and

synchronized timestamping of all samples. The part of the source code that

enables communication with the Concept2 BikeErg was adapted from the open

source web application Ergarcade[62].

53

RIP ribcage (mV)
at 10 Hz

RIP abdomen (mV)
at 10 Hz

Power (W)
at 1 Hz

Heart rate (bpm)
at 1 Hz

Sensors

Array

Timestamp Type Value
0 RIP ribcage 1831
0 RIP abdomen 1683
0 Heart rate 134
0 Power 241
1 RIP abdomen 1920
...

Visualizes
real time data

Saves all recorded values
continuously in array

 JavaScript webapp

Figure 3.10: Overview of the data flow in our data acquisition tool.

A screenshot of the web application can be seen in Figure 3.11. The source code

for the application can be found at https://github.com/ejhusom/flow.

3.4.2 Supporting Software

In the following subsection we describe which supporting software and libraries

were used to produce the results of this project.

Python: All computational experiments in this thesis has been done using

Python[63] as a programming language. This choice was made since Python is

a language that enables quick and flexible writing of code. Also, there exists

several well-developed frameworks for machine learning that has a Python API,

which makes Python a natural choice when doing machine learning experiments.

TensorFlow and Keras: There exists several frameworks for working with

machine learning, and we wanted to choose one with the following features:

• Support for GPU usage.

• High-level Python API, to enable efficient and flexible development.

• JavaScript API, in order to enable a hypothetical web app with client-side

prediction.

The machine learning framework TensorFlow[60] fulfills all of the demands lis-

ted above. It is developed by Google, available for a multitude of computing

platforms, open-source and runs on both CPUs, GPUs and TPUs. When de-

veloping in TensorFlow, we used the Keras API. Keras is an API written in

Python, providing a high-level interface for TensorFlow 2. The focus of this

54

Figure 3.11: Screenshot from the web application used to collect data.

55

library is to reduce the number of actions and commands required to perform

machine learning experiments. Keras was chosen in this project to enable effi-

cient and flexible experimentation and prototyping of machine learning models.

The machine learning experiments were mainly run on a cluster of four NVIDIA

GeForce RTX 2080 Ti graphics cards, provided by the University of Oslo.

3.4.3 Tools for structuring experiments

An important aspect when analyzing the performance of machine learning al-

gorithms is to keep track of how models perform in relation to the parameters

that define the model. In the case of neural networks, the number of parameters

are substantial, and it can be challenging to hold a thorough record of all details

of a large amount of experiments and iterations.

In order to deal with this challenge, we used a tool called Data Version Control

(DVC)[64], which among other things is designed to manage machine learning

experiments. This software integrates with the version control system called

Git, and tracks all parameters automatically during each of the stages of an

experiment. DVC also has the ability to save the evaluation metric of every

model that is made. When using this in combination with Git, one has complete

and easy overview and control over all experiments, what version of the code

with which they were run, which parameters were used, and the results of the

experiments. When using DVC, all variable hyperparameters are kept separate

from the code, and each stage of the machine learning pipeline is clearly defined.

Each stage has its own dependencies, usually a set of input data, in addition to

the hyperparameters that control the details of the stage execution.

A very handy feature is that DVC handles caching of data in-between stages of

the pipeline, and does not run a stage if the stage has already been run with

the same parameters before. Between each of the stages, the processed data

set is saved to separate directories. DVC caches the data with a unique file

hash, and fetches the correct output data for a stage when it sees that a stage is

being run with the same parameters and the same input data. This speeds up

the development cycle significantly, since rerunning identical stages are avoided

automatically from the start to the end of the project.

Figure 3.12 shows how DVC is utilized in this thesis. The source code is kept

in a Git repository, as shown in the column to the left. To run experiments,

this source code is downloaded to a workspace, and the data set is added to the

same workspace. The source code consists of three main parts: The DVC con-

trol file (dvc.yaml), scripts written in Python, and a file containing all control

parameters that define any unique experiment (params.yaml). All dependen-

cies between scripts and control parameters are defined in the DVC control file.

56

Control parameters: params.yaml

Featurize:
Which features to include

Split:
Split ratio

Scale:
Scaler method for input
variables
Scaler method for output
variable

Sequentualize
Window size

Train
Type of neural network
Size and configuration of
neural network
Number of epochs
Batch size
Other hyperparameters

DVC control file: dvc.yaml

Tracks dependency order of scripts
Tracks which hyperparameters the scripts
depend upon

restructure.py

featurize.py

split.py

scale.py

sequentialize.py

combine.py

train.py

evaluate.py

DVC
cache

git
repository workspace

Save
experiment

Stages/scripts

Add data
set

Run stages

Download
source code

Figure 3.12: This diagram presents how experiments are executed with DVC.

The gray background specify parts of the code that stay unchanged. The green

background specify parts that are adjusted between experiments. Blue arrows

indicate that data can be fetched from or put in cache, in order to save compu-

tation time.

When the stages of each experiment is run, DVC is used to check whether a

stage has been run with identical control parameters during a previous experi-

ment. The blue arrows show that for each stage, DVC can fetch data from cache

if available, or put data in cache if necessary. The opacity of the blue arrows

gives an indication on how often data need to be cached. The earliest stages are

rerun more seldom, as they have fewer dependencies than subsequent stages.

57

Chapter 4

Results

In this chapter we present the results of our research, and discuss them in the

context of our research questions.

4.1 Data acquisition and data quality

Our first research question, RQ1, was: How can we acquire the data ne-

cessary to estimate power output from breathing? We developed a web

application for simultaneous recording of the data needed for our project, and

this software is described in Section 3.4.1. This web application proved to be

stable and reliable, and ensured that the recorded data from four sensors were

timestamped correctly and stored securely. The results of our data acquisi-

tion was 21 workouts, totalling approximately 10 hours of recordings, where we

sampled RIP signals from the rib cage and abdomen respectively, heart rate and

power output. Figure 4.1 shows an example of the data collected from one of

the workouts, which is an interval workout of approximately 20 minutes, with

three bouts of intensity.

58

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

1700

1800

RI
P

rib
ca

ge
 (m

V) (a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

1400

1600

1800

RI
P

ab
do

m
en

 (m
V) (b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

120

140

160

He
ar

t r
at

e
(b

pm
) (c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

100

200

300

Po
we

r (
W

)

(d)

Figure 4.1: Sample workout, showing (a) RIP signal from the rib cage, (b) RIP

signal from the abdomen, (c) heart rate and (d) power output.

In order to get a well grounded evaluation of our models, we need to make sure

that the distribution of the values in our test data set is similar to that of our

training data set. Because of this, we ensure that the workouts of the test data

set was chosen from each of the three main workout categories, summarized

in Table 3.1. Figure 4.2 shows the distribution of the training data set, and

Figure 4.3 shows the distribution of the test data set. Overall, the distribution

seems to be similar. Note that the training data set contains data collected

while the subject was at rest, and therefore has a high presence of power values

of zero and heart rate values below 100. We wanted to include rest data in

order to give the predictive models a baseline for a power output of zero watts,

which indicates that no sport-specific effort is undertaken. In reality, the power

59

output is never zero, since we always perform some work in order to stay alive.

During experimentation, the models improved significantly after including the

data that was collected during rest. The test data do not contain data collected

while at rest, since predicting power output while at rest was out of scope for

this project. A summary of the descriptive statistics of the training and test set

is shown in Table 4.1.

0 250 500 750 1000 1250
power (W)

0

10000

20000

30000

40000

50000

50 100 150
heart rate (bpm)

0

10000

20000

30000

1000 1500 2000 2500
RIP ribcage (mV)

0

10000

20000

30000

0 500 1000 1500 2000
RIP abdomen (mV)

0

10000

20000

30000

40000

Figure 4.2: The distribution over power values in the training data set.

60

0 250 500 750 1000 1250
power (W)

0

2500

5000

7500

10000

12500

50 100 150
heart rate (bpm)

0

2000

4000

6000

1000 1500 2000 2500
RIP ribcage (mV)

0

2000

4000

6000

8000

0 500 1000 1500 2000
RIP abdomen (mV)

0

2000

4000

6000

8000

Figure 4.3: The distribution over power values in the test data set.

4.2 Network architectures

In this section we discuss our next research questions, RQ2 and RQ3: How can

we build a predictive model to estimate power output from breathing,

and what machine learning architectures are effective for doing this?

As described in Section 2.3, we chose to build our predictive models using neural

networks, because of their potential when it comes to time-series data and input

sequences with local dependencies. CNNs and RNNs are specifically designed

for detecting patterns with such dependencies, but we also included the less

complex DNNs to get a baseline for comparison. The process of choosing a fit-

ting architecture for neural networks can be very challenging, primarily because

the possible combinations and configurations are infinite. While there are some

frameworks and tools that allows some automation of this process, for example

Keras Tuner[59], it is easier to control and supervise the process by manually

crafting the network architectures. Through the common trial-and-error pro-

cess, we found three suitable architectures for examining the performance of

DNN, CNN and LSTM networks. We started with networks with few layers

and nodes/units, and expanded them until we reached architectures that yiel-

ded promising results. The control parameters that were experimented with

61

Table 4.1: Descriptive statistics for the training and test data set.

Power (W) RIP rib cage (mV) RIP abdomen (mV) Heart rate (bpm)

Statistic Train Test Train Test Train Test Train Test

Mean 150.0 197.0 1677.8 1494.2 1554.6 1571.8 115.8

Minimum 0 0 1002 1049 272 1177 42 81

Maximum 58 1101 2798 1915 2666 2203 169 173

Standard deviation 89.6 114.2 221.3 221.9 324.0 112.2 27.5 17.0

5th percentile 0 92 1274 1109 643 1358 50 102

95th percentile 301 498 1934 1778 1907 1748 152 161

62

Input layer:
Number of nodes decided by

history size and number of features

DNN

Dense layer 1:
256 nodes

ReLU activation

Dense layer 2:
128 nodes

ReLU activation

Dense layer 3:
64 nodes

ReLU activation

Output layer:
1 node

Linear activation

CNN

Conv. layer 1:
64 filters

ReLU activation

Dense layer:
32 nodes

ReLU activation

Input layer:
Number of nodes decided by

history size and number of features

Conv. layer 2:
64 filters

ReLU activation

Conv. layer 3:
64 filters

ReLU activation

Conv. layer 4:
64 filters

ReLU activation

Dropout layer :
Rate: 0.1

Flatten layer

Output layer:
1 node

Linear activation

LSTM

Input layer:
Number of nodes decided by

history size and number of features

LSTM layer:
50 hidden units
ReLU activation

Output layer:
1 node

Linear activation

Figure 4.4: The three network architectures used for producing our predictive

models.

during this process is presented in Table 3.3. The three network architectures

are presented in Figure 4.4. The LSTM network is here presented with 50 hid-

den units, which is what we used for choosing the optimal feature set. In section

4.5 we show the results for fine-tuning this number.

4.3 Feature selection

In Table 4.2 we have defined eleveen different sets of predictor variables. We

want to compare these in order to answer research question RQ4: What fea-

tures of breathing data are useful for estimating power output from

breathing? The results are presented in table 4.3, where we have calculated

the MSE and R2 score. Feature set 11 only contain heart rate as an input

63

Table 4.2: Overview over the predictor variables used in the various models.

The feature set number corresponds to the feature set number in table 4.3.

RIP rib cage and abdomen Heart rate

Feature set no. Raw Range Frequency Gradient Slope Raw Slope

1 x

2 x x

3 x x

4 x x

5 x x x

6 x x x x

7 x x x x

8 x x x x x

9 x x

10 x

11 x

feature, and this can be used as a baseline to indicate the usefulness of RIP

signals compared to heart rate as a predictor for power output. In all of the

models in Table 4.3 we used the network architectures presented in Figure 4.4,

and a history size of 100 time steps, i.e. 10 seconds. For the CNN network, we

used a filter size of 6. We employed early stopping during training, as explained

in section 3.3. We used 25% of the training data for evaluating the validation

loss for each epoch, and if the validation loss had not improved in the last 50

epochs, the best model checkpoint up until that point was saved and used for

evaluation.

In table 4.3 we have emphasized the best performing models with bold typeface.

Using DNN, the best models were obtained with feature set 3 and 6. Both

feature sets gave an MSE of 0.007 and an R2 score of 0.60. Since we prefer

simpler models over more complex ones (i.e. ones that process more input

features), we have emphasized feature set 3. With CNN, we obtained the best

model using feature set 6, which gave an MSE of 0.006 and an R2 score of 0.66.

This was also the best model overall. LSTM gave best results with feature set

3, yielding an MSE of 0.006 and an R2 score of 0.64. The benchmark models

trained on only heart rate data (feature set 11) gave best result when using

DNN, with an MSE of 0.006 and an R2 score of 0.64. Only the best performing

CNN model beats this score. The best performing model that did not include

heart rate data as an input feature was a CNN model trained on feature set 10,

giving an MSE of 0.009 and an R2 score of 0.45.

The different sets of input variables presented in Table 4.2 where designed based

on several hypotheses about what features might be used to estimate the power

output. The range of the RIP values is a feature that can express the depth of

64

Table 4.3: Error metrics indicating the performance of the predictive models

when testing various input features. History size was set to 100 time steps.

DNN CNN LSTM

Feature set no. MSE R2 MSE R2 MSE R2

1 0.021 -0.26 0.017 0.00 0.019 0.00

2 0.008 0.50 0.011 0.35 0.011 0.34

3 0.007 0.60 0.009 0.49 0.006 0.64

4 0.010 0.38 0.017 0.00 0.010 0.37

5 0.008 0.51 0.007 0.62 0.009 0.47

6 0.007 0.60 0.006 0.66 0.008 0.55

7 0.018 -0.08 0.017 0.00 0.016 0.06

8 0.011 0.35 0.017 0.00 0.007 0.56

9 0.026 0.28 0.010 0.43 0.016 0.07

10 0.016 0.07 0.009 0.45 0.014 0.20

11 0.006 0.64 0.007 0.60 0.007 0.61

our breath, while the frequency on the RIP signal might indicate our respiration

rate. The slope and gradient of the RIP signal can express how fast we draw

our breath. While we focused on engineering features that we can link to an

intuitive understanding of how our breath works, these are not necessarily the

best features for a machine learning algorithm. The trade-off between predictive

and descriptive accuracy is explained in length by Murdoch et. al.[65]. The

predictive accuracy is defined as how well a model performs in terms of the

error metrics used to evaluate it. This is the performance of the model, or

how well the model is able to estimate a desired function or mapping. The

descriptive accuracy is how well a method of interpretation is able to describe

the relationships that the model has learned. We have in our thesis focused on

what Murdoch et. al. define as model-based interpretability, which is creating

predictive models that enable understanding of the relationships learned by

the machine-learning algorithm[65]. In practice, this means that we prioritize

simpler models, which are easier to interpret, rather than complex models with

a large number of input features. With fewer input features, we can more

easily determine which features are important for making predictions. This is

especially true for machine learning methods such as neural networks, where the

model consists of a large number of parameters that are challenging to interpret

(which is also why neural networks are referred to as “black boxes”). By using

few and intuitively engineered features, we may more easily understand what

information from the breathing dynamics is used to do power output estimation.

A different approach, with a larger number of features and more complex models,

may give a higher predictive accuracy, but the interpretability might suffer.

When looking at the error metrics in Table 4.3, we see that the models trained

65

solely on heart rate (feature set 11) perform quite well compared to the feature

sets which involve the RIP signals, with R2 scores of 0.60 and above. The

best model trained on feature set 11 was obtained with the DNN, and gave an

MSE of 0.006 and an R2 score of 0.64. This serves as a baseline for our other

models, which are trained on features based either solely on RIP signals, or a

combination of RIP signals and heart rate. For DNN and LSTM, we got the

best models when using feature set 3, which consisted of RIP range and heart

rate. However, neither of these models show improved error metrics compared

to a DNN trained solely on heart rate. The only model that does so is the CNN

model trained on feature set 6, which gave an MSE of 0.006 and an R2 score of

0.66.

4.4 History size

After choosing the optimal feature set from Table 4.3, we used those results

to fine-tune the size of the individual input sequences passed to the networks,

which we call the history size. In Figure 4.5 we present the error metrics of the

three different neural networks as a function of history size. For the CNN and

the LSTM network, a history size of 100 gave the best results among the tested

values, when we used respectively feature set 6 and 3. The DNN was tested

with feature set 3, and in this case, a history size of 120 gave the best result.

20 40 60 80 100 120 140
History size (deciseconds)

0.006

0.007

0.008

0.009

0.010

0.011

M
SE

CNN, feature set 6
DNN, feature set 3
LSTM, feature set 3

Figure 4.5: The MSE and R2 score as a function of history size.

The analysis of history size shows that about 10 seconds of input samples give

the best performing models when using the networks and features chosen by us.

It makes sense that a sequence of values is needed to predict the power output,

since the chain of values form a chronological context that might indicate at

what intensity the subject is exercising. This is especially true for the RIP

signals. The process of breathing has a cyclical nature, and single RIP values

66

2 4 6 8 10
Kernel size

0.006

0.007

0.008

0.009

0.010
M

SE

Figure 4.6: The MSE as a function of number of filter size in the CNN network,

when using feature set 6. The history size was in set to 100.

cannot convey information about whether the subject is inhaling, exhaling, or

any characteristics of the signal. Some of the temporal dependencies in the input

signals can be encoded in the engineered features, and thus lessen the need for

a large sequence of samples as input. The RIP range, for example, is based on

computing the differences between maximum value and the minimum value over

a certain amount of time steps. This means that some temporal information is

included in a single value of this feature. Even so, our results indicate that a

relatively large number of time steps, around 10 seconds of input data, is needed

to get accurate power output estimation.

4.5 Neural network hyperparameters

While there are many hyperparameters that control the configuration of neural

networks, we have chosen to focus on two core parameters, that seemed to have

a significant effect on the model performance. In Figure 4.6 we see the error

metrics as a function of filter size in the CNN, when trained on feature set 6.

We have in this case used a history size of 100. The results show that a kernel

size of 6 proved to be best. The performance of the CNN is quite stable when

varying the filter size from 4 to 10, as seen in figure 4.6. The filter size affects

the receptive field of the nodes, and a larger filter size means that a node will

receive information from a larger number of nodes in the preceding layer. A

filter size of 2 is clearly inferior to the larger filter sizes, but above that, the

specific value does not seem to matter much.

Figure 4.7 shows an error analysis of the LSTM network as a function of number

of hidden units, when trained on feature set 3. It shows that 110 hidden units

give the best results, among the tested values.

67

10 20 30 40 50 60 70 80 90 100 110
Num. of hidden units

0.0070

0.0075

0.0080

0.0085

0.0090

M
SE

Figure 4.7: The MSE as a function of number of hidden units in the LSTM

network, when using feature set 3. The history size was set to 100.

The challenge of tuning hyperparameters for machine learning models, in addi-

tion to choosing the optimal feature set, is that the multi-dimensional nature of

this optimization makes it exceptionally demanding to find the most appropri-

ate configuration. Even though a history size of 100 proved to work best with

the feature set and network configuration we had chosen at that point, that

might not be the case if the networks had other architectures, or the various

hyperparameters of the model were slightly different. Finding the optimal com-

bination of all factors remains a demanding task with such a large number of

parameters to adjust.

4.6 Evaluation on test set

Based on the results in the previous sections, we arrive at the optimal configur-

ations shown in Table 4.4. Using these parameters, we evaluated our models on

the test data set with the aim of answering research question RQ5: What is

the effectiveness of estimating power output from breathing? The res-

ults of our final model evaluation are shown in Table 4.5. We chose to evaluate

the three best performing models for each type of neural network, in addition

to the best model that was trained only in RIP signals (CNN on feature set 10).

We also evaluated the model trained solely on heart rate, to use as a baseline

for the other models. In Table 4.5 we have included the error metric MAPE,

defined in Equation 2.17, which indicates the average absolute error expressed

as a decimal fraction of the true values. This error metric gives us an indica-

tion of how much the estimated values deviate from the true values on average.

MAPE differs from MSE in that it is not dependent on the scale of the values,

and can therefore give a more intuitive interpretation of the error. If we look at

the error metrics in Table 4.5, the CNN model trained on feature set 6 gives the

68

Table 4.4: A summary of the optimal variables for each of the three network

types.

DNN CNN LSTM

Feature set 3 6 3

History size 120 100 100

Table 4.5: Error metrics for final models when evaluated on the test data set.

The hyperparameters shown in table 4.4 was used.

Network Feature set MSE R2 MAPE

DNN 3 0.006 0.36 0.23

CNN 6 0.004 0.56 0.20

LSTM 3 0.006 0.35 0.22

CNN 10 0.005 0.50 0.24

DNN 11 0.006 0.43 0.22

best performance, with a MAPE of 0.20. Feature set 6 contained the gradient

and cyclic encoding of the slope for the RIP signals, in addition to the heart

rate and a cyclic encoding of the slope of the heart rate. A combination of RIP

signals and heart rate features seems be the best approach for obtaining optimal

performance of power output estimation, based on our methods. However, the

difference in performance of the five models in Table 4.5 is quite small, with the

highest MAPE being 0.24 for the CNN trained on feature set 10. Even so, this

model has a lower MSE and a higher R2 than the DNN trained on heart rate,

so it is ambiguous which one of these has the best performance. Our assessment

of the results is that the differences in performance are not significant enough

to judge one of the network architectures or feature set to be clearly superior

to the others, at least not exclusively based on error metrics.

We have also produced examples of power output estimation from these final

models. All of these examples are produced from about 20 minutes of data

from the test set, and have a red curve showing the true values, and a blue

curve showing the predictions produced by our models. We will discuss the

predictions from our various models below.

Figure 4.8 shows the power output estimation produced by the DNN trained on

feature set 3. This model shows a less noisy result compared to the results of our

CNN and LSTM models. This might indicate that we are able to obtain results

with less variability by using DNNs. However, by looking at the first peak in

the power output plots, we see that the DNN model in Figure 4.8 has a certain

time delay when estimating the peak power output. The estimated peak power

output at nearly 300 W is well below the true peak, which is just above 400

W. One explanation of this might be that the data set contains relatively few

samples with a power output of 400 and above, as seen in Figure 4.2 and 4.3.

69

Because of this, we expect the models to be weaker at estimating correct values

in that range. It is possible to remedy this by assigning a higher importance to

samples in this range during training, which means that they will have a greater

impact on adjusting the parameters than other samples. We tested this strategy

during the building of our models, but decided to abandon it since the overall

performance of the models suffered from it. The DNN model in Figure 4.8 also

shows a similar time delay at the peak at minute 6, but otherwise it seems to

handle both timing and peak values in a satisfactory manner.

0 5 10 15 20
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)

true
predicted

Figure 4.8: Prediction of power output on an interval workout from the test set,

using DNN architecture on feature set 3. MAPE: 0.23.

The CNN model in Figure 4.9, which was trained on feature set 6, is our best

performing model as concerns the error metrics. It seems to achieve better

timing of rapid increases and decreases in power output, when compared to the

DNN model in Figure 4.8. An important difference between these two types of

network is that the CNN is able to extract information from neighboring values

in the input sequence, and might therefore be better at processing the temporal

dependent characteristics of the input data. The CNN model also seems better

at hitting close to the true values at the maxima and minima of the power

output, although the output signal is in general quite noisy.

70

0 5 10 15 20
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)
true
predicted

Figure 4.9: Prediction of power output on an interval workout from the test set,

using CNN architecture on feature set 6. MAPE: 0.20.

Figure 4.10 contains an example from our LSTM model, which was trained on

feature set 3. A visual inspection of the plot shows that the model seems to

suffer from a challenge of having a time delay for large increases in power output.

This is similar to what we observed for our DNN model in Figure 4.8, but the

delay seems to be even more pronounced for our LSTM model. The LSTM

model also appears to struggle with hitting accurate values after fast increases

in power output. Nonetheless, the output signal from the LSTM model appears

more stable than the one we observe in the results from the CNN model in

Figure 4.9.

71

0 5 10 15 20
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)
true
predicted

Figure 4.10: Prediction of power output on an interval workout from the test

set, using LSTM architecture on feature set 3. MAPE: 0.22.

The CNN model trained on feature set 10, which does not include features

derived from heart rate, is shown in Figure 4.11. These results show an output

that is quite unstable and has high variability. As we can see from Figure 4.1,

the raw RIP signal contains large variations and rapid changes, while the heart

rate is much more stable. The RIP signal might be affected by slippage of the

belt and muscular movement that is not related to breathing, and can therefore

contain noise that leads to less consistency in the results. This might explain

why the CNN model in 4.11 produces such noisy output compared to the other

models.

72

0 5 10 15 20
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)
true
predicted

Figure 4.11: Prediction of power output on an interval workout from the test

set, using CNN architecture on feature set 10. MAPE: 0.24.

In Figure 4.12 we see a plot of the results from our DNN model trained solely

on heart rate. This model produces the least noisy signal of the models we have

compared, but it suffers from the same time delay as our other DNN model

in Figure 4.8, at least for some of the power output peaks (minute 2 and 6 in

Figure 4.12). Even so, the DNN model in Figure 4.12 shows that heart rate as

a single predictor can be used to achieve similar performance for power output

estimation as RIP signals.

73

0 5 10 15 20
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)
true
predicted

Figure 4.12: Prediction of power output on an interval workout from the test

set, using DNN architecture on heart rate. MAPE: 0.22.

4.7 Limitations and threats to validity

Our assessment of the main limitations of our project is summarized below:

• Limited sample size. One of the limitations of this project is the small

sample size of 21 workouts (totalling approximately 10 hours of recorded

data of the data set. In the field of deep learning, large amounts of data are

fundamental for the algorithms to generalize well[66]. A doubling or more

of the data set size would also have enabled more flexibility in the search

for an optimal configuration among the input variables, hyperparameters

and network architectures. In our experiments, we first set apart a test

set to use for a final model evaluation, which was about 20% of the total

data set. This test set was designed to include a workout from the three

categories present, interval workout, ramp workout and steady state, in

addition to a workout with mixed intensities. 30% of the samples from

the remaining training data was set apart as a validation data set, which

was used to choose the optimal feature sets and hyperparameters. During

the training process, 25% of the remaining data was used to monitor the

validation loss, in order to find the optimal number of epochs. This means

that about 42% of the total data set was used for actual training, while

38% was used for validation purposes. With more data samples, we could

74

more easily ensure that the distributions in the training, validation and

test sets were similar enough to provide us with reliable results. The

results found from evaluating validation data are especially important,

since we use this as grounds for tuning the network and choosing the best

features.

• Computational power. In the field of machine learning, computational

power often is seen as a limitation on experiments. The processing of large

amounts of data takes time, and a considerable number of experiments

need to be run to give an extensive analysis. More computational power

and faster hardware could have enabled us to run a larger number of

experiments, and given a more comprehensive investigation of the optimal

configuration of the predictive modelling. Furthermore, the hardware used

in the experiments was shared with several other research projects, which

placed further constraints on the computational resources available for our

project.

The main threat to external validity of our project is that we have used only

a single subject for data acquisition. This thesis is an N-of-1 study, where we

only have studied data acquired from a single subject. The global pandemic

of COVID-19 put limits on our ability to arrange data collection from multiple

subjects because of infection control considerations. While the N-of-1 method

has reduced the total workload by eliminating the need for administrating ex-

periments with multiple subjects, it has also placed limits on our investigation

into RIP signals as predictors for physical effort. With our N-of-1 study, we are

unable to discuss whether our chosen methods, especially the engineered fea-

tures, will give similar results when applied to data from other subjects. This

poses a threat to the external validity of our results.

Regarding threats to internal validity, it seems beyond doubt that breathing

is related to the exercise intensity during a workout, which is also the case

for heart rate. However, a possible problem is the time-related aspect of the

cause-and-effect relationship between our input and output variables. Our mod-

els estimate the power output of the current time step based on the last few

seconds of breathing and heart rate data. The motivation behind this design de-

cision was that we wanted to produce models that can provide real-time power

estimation during a workout. In reality, when a person increases the power

output during a workout, the change in breathing will in general happen as a

response to the increase in power output because of increased need for oxygen.

We experimented with using target values of earlier time steps, and also pre-

dicting the average target value for the time period corresponding to the input

sequence, but since the performance of the models in general did not increase,

we chose to stick with our initial idea of real-time estimation. Nevertheless,

this problem deserves further investigation, since both breathing and heart rate

75

undoubtedly are variables that respond to exercise intensity, and not the other

way around.

An aspect we have not addressed in this thesis is the estimation of uncertainty of

the predictions made by our models. The deep learning methods we have used

in this thesis does not by themselves provide any measure of the uncertainty,

but this could be obtained by using the dropout technique (discussed in Section

2.3.1) to produce a probabilistic distribution of estimated values, which is a

technique developed by Gal and Ghahramani[67]. An approach for improving

the accuracy of such uncertainty estimations has been proposed by Kuleshov

et. al.[68], which involves a recalibration technique. Methods like these could

have been applied to our models in order to obtain confidence intervals for

our predicted values, but due to time constraints we chose to prioritize the

comparison of different types of neural networks.

Furthermore, we have not looked into the reasons behind the predictions of

our model, which is an aspect that falls under the field of explainable artifical

intelligence. Ribeiro et. al. has proposed a method called LIME, which is

a technique that aims to explain predictions by making local, interpretable

approximations of the model around individual predictions, in order to explain

these predictions[69]. A method like this could have been used to gain deeper

insight into our models, and contribute to the assessment of both the models

and single predictions.

76

Chapter 5

Conclusion and future work

In this chapter we will conclude our thesis in section 5.1, by giving a summary

of the significant elements found in our study. In section 5.2 we give our view

on possible further research into the field of deep learning applied to sports and

breathing data.

5.1 Conclusion

In this thesis, we studied how we could use deep learning to create personal-

ized predictive models to estimate power output during exercise from breathing

data. Through our work we have created a working web application that is able

to collect respiratory inductive plethysmography (RIP) signals, heart rate and

power output simultaneously through a unified interface, which also visualizes

the collected data in real-time. The application connects to peripheral sensors

using Web Bluetooth, and can connect to any commercial heart rate monitor

and power meter that uses the standardized Bluetooth characteristics for these

specific sensor types. To record the RIP signals, two SweetZpot Flow sensors are

needed, which are worn around the rib cage and abdomen. The data collected

through the web application was used for training neural networks to estimate

the power output during cycling workouts. The models were trained using input

features based on either RIP signals, heart rate, or a combination of the two.

We investigated the performance of three different types of neural network:

Dense neural networks (DNN), convolutional neural networks (CNN) and long

short-term memory (LSTM) networks. Our research into the effectiveness of

estimating power output from breathing has shown that a CNN trained on

features derived from both RIP signals and heart rate gives a mean absolute

77

percentage error (MAPE) of 0.20, when evaluated on our test data set. The

CNN used sequences of the last 10 seconds of input features to estimate a

single power output value. In comparison, a DNN and an LSTM that were also

trained on a combination of RIP and heart rate features resulted in a MAPE of

respectively 0.23 and 0.22. Our best performing model that were only trained

on RIP features was a CNN model with a MAPE of 0.24 and an R2 score of

0.50. This is comparable to our best performing model trained only on heart

rate, which was a DNN model with a MAPE of 0.22 and an R2 score of 0.43.

The different types of networks and feature sets show in general quite similar

performance, and it is therefore challenging to judge that one of them is clearly

preferred over another. However, the results seem to indicate that a combination

of RIP features and heart rate features give the best performance, and that

CNNs are most suitable to deal with these input sequences. We conclude that

using deep learning is a viable method for creating a personalized power output

estimation model based on RIP signals and heart rate.

5.2 Future work

We have in this thesis laid a foundation for using deep learning to estimate power

output from RIP signals, and there are several possible ways this research could

be taken further.

Diverse data sets

A continuation of this research is to gather a more diverse data set. This thesis

has been focusing on data from a single subject, but a deeper understanding

of the data might be gained by acquiring data from subjects of various ages,

genders, heights, weights and physical fitness levels. Applying our methods to

a diverse data set might give insights to whether generalized, non-personalized

models are able to give accurate power output estimation.

Extending estimation of power and energy expenditure to other sports

The research in this thesis can easily be extended to other activity forms, es-

pecially indoor rowing and skiing on exercise ergometers. The web application

we made for data acquisition is able to connect to rowing and skiing ergometers

from Concept2, the same producer of the bike ergometer used in this thesis.

This means that all source code, both for data acquisition and data processing,

can be used without modifications on data from these two exercise machines.

While power output is an interesting variable in terms of accurate estimations

of energy expenditure and for competitive athletes, other people might be more

interested in the number of calories burned during a workout. Many ergometers,

78

including the Concept2 BikeErg used in our experiments, provide an estimation

of the calories burned in real-time during a workout. It is trivial to change the

target variable in our machine learning pipeline from power output to the rate

of calories burned. The same procedures that we have demonstrated may then

be used to provide another measure of energy expenditure in similar contexts.

79

Chapter 6

Appendix A: Testing

models on data from other

subjects

The predictive models in this thesis were trained on data collected from a male

subject of age 25, whom we in this appendix will refer to as subject A. Some

additional data were collected from two other subjects: One female subject

of age 25 (subject B), and one male subject of age 62 (subject C). We did not

acquire enough data from subject B and C to train personalized models on their

data, but we used the data from those two subjects to evaluate our final models,

which were trained on data from subject A. This gives us an indication on how

the personalized models of subject A perform on data from other subjects.

The results from evaluating our models on data from subject B and C are

presented in Table 6.1. Examples of power output estimation on a workout

from the female subject B are presented in Figure 6.1, 6.2, 6.3, 6.4 and 6.5.

While the error metrics in Table 6.1 show that we get significantly worse results

by applying the personalized models to other subjects, the figures presenting

example predictions of power output show that the models are still able to give

decent approximations of the ground truth.

80

Table 6.1: Error metrics for final models when evaluted on a test data set

collected from other subjects. The hyperparameters shown in Table 4.4 was

used.

Network Feature set MSE R2 MAPE

DNN 3 0.014 -0.04 0.33

CNN 6 0.013 0.00 0.31

LSTM 3 0.012 0.06 0.32

CNN 10 0.013 0.03 0.30

DNN 11 0.011 0.12 0.32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)

true
predicted

Figure 6.1: Prediction of power output on an interval workout from the test set,

using DNN architecture and feature set 3.

81

0 2000 4000 6000 8000 10000 12000
50

100

150

200

250

300

350

400

Figure 6.2: Prediction of power output on an interval workout from the test set,

using CNN architecture and feature set 6.

0 2000 4000 6000 8000 10000 12000
50

100

150

200

250

300

350

400

Figure 6.3: Prediction of power output on an interval workout from the test set,

using LSTM architecture and feature set 3.

82

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)

true
predicted

Figure 6.4: Prediction of power output on an interval workout from the test set,

using CNN architecture and feature set 10.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (min)

50

100

150

200

250

300

350

400

po
we

r (
W

)

true
predicted

Figure 6.5: Prediction of power output on an interval workout from the test set,

using DNN architecture and feature set 11.

83

Bibliography

[1] Ala Alwan et al. Global status report on noncommunicable diseases 2010.

World Health Organization, 2011.

[2] World Health Organization et al. Global health risks: mortality and burden

of disease attributable to selected major risks. World Health Organization,

2009.

[3] Michael Mcgrath and Cliodhna Ni Scanaill. Sensor Technologies: Health-

care, Wellness, and Environmental Applications. 2013.

[4] Akram Bayat, Marc Pomplun, and Duc A Tran. A study on human activity

recognition using accelerometer data from smartphones. Procedia Computer

Science, 34:450–457, 2014.

[5] Tudor Pascu, Martin White, and Zeeshan Patoli. Motion capture and

activity tracking using smartphone-driven body sensor networks. In Third

International Conference on Innovative Computing Technology (INTECH

2013), pages 456–462. IEEE, 2013.

[6] Jafet Morales, David Akopian, and Sos Agaian. Human activity recognition

by smartphones regardless of device orientation. In Mobile Devices and

Multimedia: Enabling Technologies, Algorithms, and Applications 2014,

volume 9030, page 90300I. International Society for Optics and Photonics,

2014.

[7] Carl Foster, Jose A Rodriguez-Marroyo, and Jos J De Koning. Monitoring

training loads: the past, the present, and the future. International journal

of sports physiology and performance, 12(s2):S2–2, 2017.

[8] Raija M. T. Laukkanen and Paula K. Virtanen. Heart rate monitors: State

of the art. Journal of Sports Sciences, 16(sup1):3–7, 1998. PMID: 22587712.

[9] Ryan T Li, Scott R Kling, Michael J Salata, Sean A Cupp, Joseph Shee-

han, and James E Voos. Wearable performance devices in sports medicine.

Sports health, 8(1):74–78, 2016.

84

[10] Edward F Coyle and J Gonzalez-Alonso. Cardiovascular drift during pro-

longed exercise: New perspectives. Exercise and sport sciences reviews,

29(2):88–92, 2001.

[11] Asker Jeukendrup and Adrie Van Diemen. Heart rate monitoring dur-

ing training and competition in cyclists. Journal of Sports Sciences,

16(sup1):91–99, 1998. PMID: 22587722.

[12] Louis Passfield, James G Hopker, Simon Jobson, D Friel, and Mikel Za-

bala. Knowledge is power: Issues of measuring training and performance

in cycling. Journal of sports sciences, 35(14):1426–1434, 2017.

[13] HKA Lakomy. Measurement of work and power output using friction-

loaded cycle ergometers. Ergonomics, 29(4):509–517, 1986.

[14] Sébastien Boyas, Antoine Nordez, Christophe Cornu, and Arnaud Guével.

Power responses of a rowing ergometer: Mechanical sensors vs. Concept2®

measurement system. International journal of sports medicine, 27:830–3,

11 2006.

[15] Martin R Miller, Jats Hankinson, V Brusasco, F Burgos, R Casaburi,

A Coates, R Crapo, Pvd Enright, CPM Van Der Grinten, P Gustafs-

son, et al. Standardisation of spirometry. European respiratory journal,

26(2):319–338, 2005.

[16] J Askanazi, PA Silverberg, RJ Foster, AI Hyman, J Milic-Emili, and

JM Kinney. Effects of respiratory apparatus on breathing pattern. Journal

of Applied Physiology, 48(4):577–580, 1980.

[17] Steven Gastinger, Anthony Sorel, Guillaume Nicolas, Arlette Gratas-

Delamarche, and Jacques Prioux. A comparison between ventilation and

heart rate as indicator of oxygen uptake during different intensities of ex-

ercise. Journal of sports science & medicine, 9(1):110, 2010.

[18] Steven Gastinger, Alan Donnelly, Rémy Dumond, and Jacques Prioux.

A review of the evidence for the use of ventilation as a surrogate meas-

ure of energy expenditure. Journal of Parenteral and Enteral Nutrition,

38(8):926–938, 2014.

[19] Scott J Strath, Ann M Swartz, David R Bassett Jr, William L O’Brien,

George A King, and Barbara E Ainsworth. Evaluation of heart rate as a

method for assessing moderate intensity physical activity. Medicine and

science in sports and exercise, 32(9 Suppl):S465–70, 2000.

[20] Sabino Padilla, Inigo Mujika, Javier Orbananos, and Francisco Angulo. Ex-

ercise intensity during competition time trials in professional road cycling.

Medicine and science in sports and exercise, 32(4):850–856, 2000.

85

[21] Colm McParland, Joseph Mink, and Charles G Gallagher. Respiratory

adaptations to dead space loading during maximal incremental exercise.

Journal of Applied Physiology, 70(1):55–62, 1991.

[22] Nancy F Butte, Ulf Ekelund, and Klaas R Westerterp. Assessing physical

activity using wearable monitors: measures of physical activity. Medicine

& Science in Sports & Exercise, 44(1S):S5–S12, 2012.

[23] W Larry Kenney, Jack H Wilmore, and David L Costill. Physiology of sport

and exercise. Human kinetics, 2015.

[24] Carl J Caspersen, Kenneth E Powell, and Gregory M Christenson. Phys-

ical activity, exercise, and physical fitness: Definitions and distinctions for

health-related research. Public health reports, 100(2):126, 1985.

[25] James A Levine. Measurement of energy expenditure. Public health nutri-

tion, 8(7a):1123–1132, 2005.

[26] Marie Chan, Daniel Estève, Jean-Yves Fourniols, Christophe Escriba, and

Eric Campo. Smart wearable systems: Current status and future chal-

lenges. Artificial intelligence in medicine, 56(3):137–156, 2012.

[27] Nickfacey. Bottom bracket with connection cables. https:

//en.wikipedia.org/wiki/Cycling_power_meter#/media/File:

Ergomo_Bottom_Bracket.JPG, 2008. [Used under Creative Commons

Attribution-Share Alike 3.0 Unported; accessed May 5, 2021].

[28] Cosmed. Advanced six minute walk test with ventilation meas-

urement. https://commons.wikimedia.org/wiki/File:Advanced_Six_

Minute_Walk_Test_(6MWT).jpg, 2010. [Cropped from original; used under

Creative Commons Attribution-Share Alike 3.0 Unported; accessed April

27, 2021].

[29] Juha Karvonen and Timo Vuorimaa. Heart rate and exercise intensity

during sports activities. Sports Medicine, 5(5):303–312, May 1988.

[30] Muriel B Gilman. The use of heart rate to monitor the intensity of endur-

ance training. Sports Medicine, 21(2):73–79, 1996.

[31] rrafson. Rowing machine. https://commons.wikimedia.org/wiki/File:

Advanced_Six_Minute_Walk_Test_(6MWT).jpg, 2014. [Cropped from ori-

ginal; used under Creative Commons Attribution-Share Alike 3.0 Unported;

accessed April 27, 2021].

[32] SH Cedar. Every breath you take: The process of breathing explained.

Nursing Times, 114(1):47–50, 2018.

86

[33] N Scott Deno, E Kamon, and David M Kiser. Physiological responses

to resistance breathing during short and prolonged exercise. American

Industrial Hygiene Association Journal, 42(8):616–623, 1981.

[34] TS Chadha, H Watson, S Birch, GA Jenouri, AW Schneider, MA Cohn, and

MA Sackner. Validation of respiratory inductive plethysmography using

different calibration procedures. American Review of Respiratory Disease,

125(6):644–649, 1982.

[35] Jonathan D Sackner, Asa J Nixon, Brian Davis, Neal Atkins, and Marvin A

Sackner. Non-invasive measurement of ventilation during exercise using a

respiratory inductive plethysmograph. American Review of Respiratory

Disease, 122(6):867–871, 1980.

[36] David M Caretti, Paul V Pullen, Leslie A Premo, and Wade D Kuhlmann.

Reliability of respiratory inductive plethysmography for measuring tidal

volume during exercise. American Industrial Hygiene Association Journal,

55(10):918–923, 1994.

[37] Arne Laugstøl. Ventilation measurement devices, methods and computer

program product, March 24 2020. US Patent 10,595,779.

[38] Yann LeCun et al. Generalization and network design strategies. Connec-

tionism in perspective, 19:143–155, 1989.

[39] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536,

1986.

[40] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics, pages 249–256.

JMLR Workshop and Conference Proceedings, 2010.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

internal representations by error propagation. Technical report, California

Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[43] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-

timization. 2017.

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks

from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,

2014.

87

[45] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Dip-

loma, Technische Universität München, 91(1), 1991.

[46] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learn-

ing long-term dependencies in recurrent networks. In IEEE international

conference on neural networks, pages 1183–1188. IEEE, 1993.

[47] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2):157–166, 1994.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[49] Adelchi Azzalini and Bruno Scarpa. Data analysis and data mining: An

introduction. OUP USA, 2012.

[50] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.

Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.

Springer, 2012.

[51] FJP Arts and H Kuipers. The relation between power output, oxygen

uptake and heart rate in male athletes. International journal of sports

medicine, 15(05):228–231, 1994.

[52] Vitor P Costa, Luiz GA Guglielmo, and Carl D Paton. Validity and reliab-

ility of the powercal device for estimating power output during cycling time

trials. The Journal of Strength & Conditioning Research, 31(1):227–232,

2017.

[53] Agrin Hilmkil, Oscar Ivarsson, Moa Johansson, Dan Kuylenstierna, and

Teun van Erp. Towards machine learning on data from professional cyclists,

2018.

[54] Mark Pfeiffer and Andreas Hohmann. Applications of neural networks in

training science. Human movement science, 31(2):344–359, 2012.

[55] Sagar Sen, Pierre Bernabé, and Erik Johannes BLG Husom. Deepventila-

tion: Learning to predict physical effort from breathing. 2020.

[56] S Boyas, A Nordez, C Cornu, and A Guével. Power responses of a row-

ing ergometer: mechanical sensors vs. Concept2® measurement system.

International journal of sports medicine, 27(10):830–833, 2006.

[57] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-

ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,

Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,

Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,

88

Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert

Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.

Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and

SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods, 17:261–272, 2020.

[58] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf

Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian

Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,

Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-

Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-

basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with

NumPy. Nature, 585(7825):357–362, September 2020.

[59] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin,

Luca Invernizzi, et al. Keras Tuner. https://github.com/keras-team/

keras-tuner, 2019.

[60] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,

Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vas-

udevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software available from

tensorflow.org.

[61] Web bluetooth specification. https://webbluetoothcg.github.io/

web-bluetooth/. Accessed: March 30, 2021.

[62] Dean Fogarty. Ergarcade. https://github.com/ergarcade/pm5-base,

2019. Accessed: February 5, 2020.

[63] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-

ateSpace, Scotts Valley, CA, 2009.

[64] Ruslan Kuprieiev, Dmitry Petrov, Pawe l Redzyński, Saugat Pachhai,

Casper da Costa-Luis, Alexander Schepanovski, Peter Rowlands, Ivan

Shcheklein, Jorge Orpinel, Fábio Santos, Aman Sharma, Zhanibek, Gao,

Batuhan Taskaya, Dani Hodovic, Andrew Grigorev, Earl, Nabanita Dash,

nik123, George Vyshnya, maykulkarni, Max Hora, Vera, Sanidhya Mangal,

Wojciech Baranowski, Clemens Wolff, Alex Maslakov, Alex Khamutov,

89

Kurian Benoy, and Ophir Yoktan. Dvc: Data version control - git for

data & models, February 2021.

[65] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and

Bin Yu. Definitions, methods, and applications in interpretable machine

learning. Proceedings of the National Academy of Sciences, 116(44):22071–

22080, 2019.

[66] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable ef-

fectiveness of data. IEEE Intelligent Systems, 24(2):8–12, 2009.

[67] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-

tion: Representing model uncertainty in deep learning. In international

conference on machine learning, pages 1050–1059. PMLR, 2016.

[68] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate un-

certainties for deep learning using calibrated regression. In International

Conference on Machine Learning, pages 2796–2804. PMLR, 2018.

[69] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I

trust you?” Explaining the predictions of any classifier. In Proceedings of

the 22nd ACM SIGKDD International Conference on knowledge discovery

and data mining, pages 1135–1144, 2016.

90

	Acronyms
	Introduction
	Motivation
	Problem statement
	Thesis structure

	Background
	Tracking and monitoring physical effort
	Heart rate as a method for tracking physical effort
	Speed as a method for tracking physical effort
	Power as a method for tracking physical effort

	Breathing
	Spirometry
	Respiratory inductive plethysmography

	Predictive models
	Basics of deep learning and neural networks
	Convolutional neural networks
	Recurrent neural networks
	Model selection and evaluation
	Scaling

	Relevant work

	Methods
	Data acquisition
	Preprocessing
	Building predictive models
	Implementation
	Software for data acquisition
	Supporting Software
	Tools for structuring experiments

	Results
	Data acquisition and data quality
	Network architectures
	Feature selection
	History size
	Neural network hyperparameters
	Evaluation on test set
	Limitations and threats to validity

	Conclusion and future work
	Conclusion
	Future work

	Appendix A: Testing models on data from other subjects

