# Deep learning to estimate power output from breathing

#### Erik Johannes Bjørnson Løvenskiold Grüner Husom

Department of Physics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO



### Outline



## CONTEXT METHODS RESULTS

#### Motivation



Physical inactivity – a major leading risk factor for non-communicable diseases



Activity tracking – a tool for motivating physical activity and measuring health variables

Context

Methods

Results

### Activity trackers







Heart rate monitors

#### Speed measurements

Power meters

#### Context

#### Methods

#### Results

#### Cardiovascular drift



### Breathing and physical activity

- Increased muscle work leads to increased need for oxygen.
- Reactive to change in exercise intensity.
- Universal metric across various exercise forms.

#### How to measure breathing?



#### Exercise spirometer[1]

[1] Cosmed. Advanced six minute walk test with ventilation measurement. https://commons.wikimedia.org/wiki/File:Advanced\_Six\_Minute\_Walk\_Test\_(6MWT).jpg, 2010. [Cropped from original; used under Creative Commons Attribution-Share Alike 3.0 Unported; accessed April 27, 2021].

Context

Methods

#### How to measure breathing?



Respiratory inductive plethysmography (RIP)



### How to measure breathing?





Context

#### Research objective

- Can we use breathing to estimate physical effort?
- Can we use RIP signals to estimate power output?

#### How to estimate power output?



| Context |  |
|---------|--|
|---------|--|

#### How to estimate power output?

- Predictive models: Neural neworks
  - Dense neural networks (DNNs)
  - Convolutional neural networks (CNNs)
  - Long short-term memory (LSTM) networks

#### CNNs



Input

Convolution

Pooling Conv

Convolution

Pooling Fully connected

#### LSTM networks

Classification: Positive statement



#### Methods

#### Data acquisition

#### Preprocessing

### Building predictive models

**Methods** 

#### Data acquisition



#### Cycling as activity form

222

N-of-1 study



**Four sensors** 

RIP from rib cage RIP from abdomen Heart rate Power output

### Data acquisition software



Sensors

Context

### Experimental setup





Context

#### Methods

Results

#### Example of raw data



Methods

#### Workout categories



Context

Results

#### **Preprocessing:** Feature extraction

- --- RIP range
- --- RIP gradient
- --- RIP slope/angle
  - Sine/cosine encoding



#### Neural network architectures

- DNN: 3 fully connected layers.
- CNN: 4 convolutional layers, 1 dropout layer, 1 fully connected layer.
- LSTM: 110 hidden units.

#### Feature sets

|                 | RIP rib cage and abdomen |       |           |          |       | Heart rate |       |
|-----------------|--------------------------|-------|-----------|----------|-------|------------|-------|
| Feature set no. | Raw                      | Range | Frequency | Gradient | Slope | Raw        | Slope |
| 1               | x                        |       |           |          |       |            |       |
| 2               | x                        |       |           |          |       | x          |       |
| 3               |                          | x     |           |          |       | x          |       |
| 4               |                          |       | x         |          |       | x          |       |
| 5               |                          |       |           | x        | x     | x          |       |
| 6               |                          |       |           | x        | x     | x          | x     |
| 7               |                          | x     | x         | x        | x     |            |       |
| 8               |                          | x     | x         | x        | x     | x          |       |
| 9               |                          |       |           | x        | x     |            |       |
| 10              |                          |       |           |          | x     |            |       |
| 11              |                          |       |           |          |       | x          |       |

#### Feature sets

| Set 3           | Set 6                                | Set 10    | Set 11 |
|-----------------|--------------------------------------|-----------|--------|
| RIP range<br>HR | RIP gradient+slope<br>HR<br>HR slope | RIP slope | HR     |

| $\cap$ | $\mathbf{r}$ | $\Gamma \cap$ | VT |
|--------|--------------|---------------|----|
|        |              |               |    |
|        |              |               |    |



### Results

| Type of |                               |                       |                                       |
|---------|-------------------------------|-----------------------|---------------------------------------|
| network | Feature set                   | R <sup>2</sup> -score | Mean absolute percentage error (MAPE) |
| DNN     | 3 (combination of RIP and HR) | 0.36                  | 0.23                                  |
| CNN     | 6 (combination of RIP and HR) | 0.56                  | 0.20                                  |
| LSTM    | 3 (combination of RIP and HR) | 0.35                  | 0.22                                  |
| CNN     | 10 (only RIP)                 | 0.50                  | 0.24                                  |
| DNN     | 11 (only HR)                  | 0.43                  | 0.22                                  |

| $\sim$ |          |   |    |        |   |   |
|--------|----------|---|----|--------|---|---|
|        | $\frown$ | n | T  | $\cap$ | V | 2 |
|        | U        |   | L. |        |   |   |

# Example of power output estimation: CNN



Context



#### Example of power output estimation: CNN



Context

### Conclusion

- Promising results using deep learning to estimate power output from breathing
- Enabling a non-invasive, portable way of estimating physical effort
- Future work:
  - Easily extended to other applications
  - Larger, more diverse data set
- Source code is available at GitHub: <u>https://github.com/ejhusom/DeepPower</u>