

Machine Learning for Fatigue Detection using Fitbit Fitness Trackers

icSports 2022

Erik Johannes Husom

October 28, 2022

Machine Learning for Fatigue Detection using Fitbit Fitness Trackers

Authors:

- Erik Johannes Husom, SINTEF Digital, Norway
- Rustem Dautov, SINTEF Digital, Norway
- Adela-Aniela Videsjorden, University of Oslo, Norway
- Fotis Gonidis, Gnomon Informatics SA, Greece
- Spyridon Papatzelos, Gnomon Informatics SA, Greece
- Nikolaos Malamas, Gnomon Informatics SA, Greece

Context and motivation

- Occupational health and safety
 - Manual labour
 - Field workers
 - Fatigue-caused accidents
- Long-term endurance sports
 - Training load
- Fatigue estimation and detection
 - Traditionally done using electroencephalogram (EEG)
 - Wearable devices (consumer-grade)
 - Continuous monitoring of biomarkers
 - Machine learning to produce predictive models
 - Extracting information from sequences
 - $\circ~$ Suitable for learning from large amounts of data

- Human tiredness
- Result of prolonged physical and mental activity
- Could be a symptom of medical conditions
- Safety hazard

Fatigue assessment

- Electroencephalograms (EEG)¹
 - Monitoring of brain waves
- Percentage eye openness tracking (PERCLOS)²
- General challenges:
 - Limited portability
 - Infrequent use

¹Karuppusamy, N. S. and Kang, B.-Y. (2020). Multi-modal System to Detect Driver Fatigue Using EEG, Gyroscope, and Image Processing. *IEEE Access*, 8:129645–129667.

²Zhang, J., Chen, Z., Liu, W., Ding, P., and Wu, Q. (2021). A Field Study of Work Type Influence on Air Traffic Controllers' Fatigue Based on Data-Driven PERCLOS Detection. *International journal of environmental research and public health*, 18(22):11937.

Fatigue assessment

- Wearable technology and fatigue
 - Activity levels
 - Number of steps
 - Heart rate
 - Sleep patterns
- Fitbit activity trackers (wristbands)

Fatigue assessment

- Fatigue Assessment Scale (FAS)³
 - 10 statements rated on a scale from 1 (never) to 5 (always)
 - Fatigue score in the range 10-50
 - Estimated fatigue levels:
 - 10-21: No fatigue
 - 22-34: Fatigue
 - 35-50: Extreme fatigue

³Michielsen, H. J., De Vries, J., and Van Heck, G. L. (2003). Psychometric qualities of a brief self-rated fatigue measure: The fatigue assessment scale. *Journal of psychosomatic research*, 54(4):345–352.

Fatigue Assessment Scale (FAS)

	Never	Sometimes	Regularly	Often	Always
1. I am bothered by fatigue (WHOQOL)	1	2	3	4	5
2. I get tired very quickly (CIS)	1	2	3	4	5
3. I don't do much during the day (CIS)	1	2	3	4	5
4. I have enough energy for everyday life (WHOQOL)	1	2	3	4	5
5. Physically, I feel exhausted (CIS)	1	2	3	4	5
6. I have problems starting things (FS)	1	2	3	4	5
7. I have problems thinking clearly (FS)	1	2	3	4	5
8. I feel no desire to do anything (CIS)	1	2	3	4	5
9. Mentally, I feel exhausted	1	2	3	4	5
10. When I am doing something, I can concentrate quite well (CIS)	1	2	3	4	5

Figure 2: FAS questionnaire

Approach

Figure 3: Conceptual archtiecture of our approach

Approach

Figure 4: Conceptual architecture of our approach

Approach

- Data collection
- Data preprocessing / feature selection
- Creating ML models

Data collection participants

- 35 subjects
 - 31 female
 - 4 male
- Age: 45 \pm 13 years

Data collection participants

Data collection participants

Figure 4. EAS score distribution among participants

14/31

Data collection

- Fitbit wristband worn for 7 days
- FAS-questionnaire filled out once

Data preprocessing

Туре	Variable	Granularity		
	Calories burned	Daily		
	Number of floors	Daily		
	Sedentary minutes	Daily		
Activity	Lightly active minutes	Daily		
	Fairly minutes	Daily		
	Very minutes	Daily		
	Number of steps	Daily		
	Distance walked	Daily		
Haart rota	Heart rate time series	1 second		
neart rate	Resting heart rate	Daily		
	Duration	Daily		
	Efficiency	Daily		
Slaar	Start time	Daily		
Sleep	End time	Daily		
	Main sleep or nap	Daily		
	Sleep stage duration	1 second		
	Number of			
	occurences of	Daily		
	sleep stage			

Feature selection

Feature name	Unit	PCC
Sleep total duration	minutes	0.072
Sleep efficiency	score, 0-100	-0.066
Deep sleep duration	minutes	-0.054
Light sleep duration	minutes	0.173
REM sleep duration	minutes	-0.059
Awake in bed duration	minutes	-0.029
Deep sleep count	count	-0.047
Light sleep count	count	0.085
REM sleep count	count	-0.109
Awake in bed count	count	-0.012
Sedentary minutes	minutes	0.138
Lightly active minutes	minutes	-0.082
Fairly active minutes	minutes	0.027
Very active minutes	minutes	-0.149
Average heart rate	beats per min	0.211
Minimum heart rate	beats per min	0.333
Maximum heart rate	beats per min	0.027
Resting heart rate	beats per min	0.265
Calories burned	kcal	-0.092
Steps	count	-0.055
Distance	meters	-0.068
Age	years	0.338
Gender	female/male	-0.394
Weight	kg	0.143
Height	cm	-0.193
Body Mass Index	kg/m ²	0.275

Feature selection

The input features were based on:

- Sleep
- Amount of activity/inactivity
- Heart rate
- Age
- Gender
- Weight
- Height

Sequence as input

- Using multiple time steps as input to the model
- Capture temporal information
- Sequence length: d

Machine learning algorithms

- Decision Tree (DT)
- Random Forest (RF)
- XGBoost, Extreme Gradient Boosting (XGB)
- k-Nearest-Neighbors (kNN)
- Fully-Connected Neural Network (FCNN)
- Long Short-Term Memory network (LSTM)

Performance metrics

• Mean Squared Error (MSE):

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

• R²-score, coefficient of determination:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Fine-tuning hyper-parameters of ML algorithms

ML algorithm	Hyper-parameter	Values				
	Max depth	2, 5, 10, 15, 20, 50, 100				
DT	Minimum samples split	2, 5, 10				
	Minimum samples leaf	1,3,5				
	Max depth	2, 5, 10, 15, 20, 50, 100				
DE	Number of estimators	50, 100, 200, 400, 600, 800, 1000, 1200				
KI	Minimum samples split	2, 5, 10				
	Minimum samples leaf	1,3,5				
	Max depth	2, 5, 10, 15, 20, 50, 100				
XGB	Number of estimators	50, 100, 200, 400, 600, 800, 1000, 1200				
	Learning rate	0.3, 0.1, 0.001, 0.0001				
	Number of neighbors	2,4,5,6,10,15,20,30				
LNIN	Weights	uniform or distance				
NININ	Leaf size	10, 30, 50, 80, 100				
	Algorithm	ball_tree, kd_tree or brute				

Figure 10: Search space of hyper-parameters

Fine-tuning hyper-parameters of ML algorithms

- FCNN: 1 hidden layer with 8 nodes and Rectified Linear Unit (ReLU) activation in each node
- LSTM: 1 LSTM layer with 8 hidden units and sigmoid activation in each unit.

Results: Hyper-parameters

ML algorithm	Hyper-parameter	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7		
	Max depth		20	15	100	20	50	100		
DT	Minimum samples split	10	10	10	2	5	10	2		
	Minimum samples leaf	1	3	3	5	3	1	5		
	Max depth	2	2	10	10	100	100	10		
DE	Number of estimators	600	600	50	200	200	200	100		
KF	Minimum samples split	5	5	10	10	2	2	5		
	Minimum samples leaf	3	3	5	5	5	5	5		
	Max depth	50	15	15	15	15	5	20		
XGB	Number of estimators	400	50	50	50	50	800	400		
	Learning rate	0.3	0.1	0.1	0.1	0.1	0.3	0.1		
	Number of neighbors	30								
LNIN	Weights	distance								
KININ	Leaf size	10								
	Algorithm	kd_tree								
ECNN	Number of layers	1								
FUNIN	Number of nodes in each layer	er 8								
ISTM	Number of units	8								
LOIN	Dropout rate	0.2								

Figure 11: Optimal configuration of hyper-parameters

Results: Model comparison

						•	1						
		DT		RF		XGB		kNN		FCNN		LSTM	
Γ	d	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2
	1	141.7	-0.410	159.6	-0.588	127.2	-0.266	84.5	0.159	29.4	0.708	104.3	-0.038
	2	136.9	-0.334	156.9	-0.529	123.2	-0.201	91.9	0.104	24.1	0.765	117.8	-0.149
	3	150.9	-0.430	154.7	-0.467	125.3	-0.188	102.3	0.030	22.4	0.787	110.3	-0.046
	4	194.3	-0.795	147.8	-0.364	121.2	-0.119	108.9	-0.005	21.4	0.803	126.5	-0.169
	5	146.7	-0.304	138.6	-0.232	102.8	0.086	115.6	-0.027	20.8	0.815	130.4	-0.159
	6	144.2	-0.207	137.7	-0.153	119.5	-0.001	116.7	0.023	25.3	0.788	205.9	-0.724
	7	180.8	-0.362	151.6	-0.142	137.2	-0.033	146.0	-0.022	27.4	0.794	135.8	-0.023

Figure 12: Model performance for the various machine learning algorithms

Results: Best performing model

Best performing model:

- Fully-Connected Neural Network (FCNN)
 - 1 hidden layer
 - 8 nodes
- 5 time steps (days) as input
- R²-score: 0.815
- Average error of 18% on the test set.

Results

Figure 13: True vs predicted values of the best model

27/31

• Similar research showed using deep learning outperformed traditional ML method⁴

⁴Bai, Y., Guan, Y., and Ng, W.-F. (2020). Fatigue assessment using ECH and Actigraphy sensors. In *Proceedings of the 2020 International Symposium on Wearable Computers*, pages 12–16.

Limitations

- Limited number of participants
- Gender imbalance
- High-level "black box" features from Fitbit

Conclusion

- Fatigue estimation using ML
- Predictions based on biomarkers from wearable technologies
- Occupational fatigue-related hazards
- Future works
 - Validation with more users over longer timeframes
 - Continual learning
 - Federated learning

Technology for a better society