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• In Step 1 (data preprocessing), the pipeline splits training 
timeseries data into subsequences and extracts statistical 
features from them. 

• This step has three parameters:
• optimal window size (the length of a sliding cutout of a time 

sequence of data)
• overlap between the subsequences\windows
• several features can be extracted from data subsequences to 

remove the temporal dimension

An example unsupervised learning system (pipeline) that
automatically discovers anomalies in sensor data [1]
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• In Step 2 (training the model), the pipeline performs cluster 
analysis on the feature vectors (assigns each feature vector 
to a cluster/category). 

• This step has two parameters: the clustering method (e.g., 
Kmeans, DBScan) and method's configuration parameters.
• For instance, Kmeans has the following parameters: 

(i) the number of clusters, 

(ii) predefined centroids (true or false), 

(iii) the initialization method (k-means++ or init), 

(iv) the number of runs with different centroid seeds, 

(v) the maximum number of iterations for a single run, 

(vi) the relative tolerance, and 

(vii) Kmeans algorithm (e.g., Lloyd or elkan)

• The feature vectors of the new data are being validated in 
Step 3 (Labeling & Validation).



Context: Configuration of 
Unsupervised Learning Systems

Technology for a better society

• The effectiveness of such an unsupervised learning system 
highly depends on the configuration of each step in the system.
• e.g., the selection of data preprocessing hyperparameters, 

features, and appropriate clustering algorithms and their 
hyperparameters

• Finding the right configuration is challenging due to
• large configuration space
• numerous manual trials and errors.

• The absence of ground truth labels due to the systems' 
unsupervised nature poses a challenge for automating the 
configuration process.



Related Work
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• Automated configuration support for machine learning systems have been proposed in the context of 
AutoML [2]-[4]
• Most AutoML approaches focus on supervised learning systems, 

• Some others concentrate on either cluster algorithm selection or hyperparameter tuning of the algorithms 
[5]-[11]
• Excluding hyperparameters for other ML steps (e.g., data preprocessing)

• To deal with the lack of ground truth labels, these approaches rely on internal validity metrics (e.g., 
silhouette score [12])
• These metrics do not capture the dynamic nature of the dataset, and their performance is sensitive to the data 

characteristics (e.g., noise, density, and skewed distribution) [13] [14]

• AutoConf employs metamorphic testing to address the lack of ground truth labels.
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• Metamorphic testing to address the lack of 
ground truth labels while evaluating the 
performance of configurations

• Bayesian optimization guided with metamorphic 
testing output as the objective function

• To determine the optimal configuration

• Tree Parzen Estimator (TPE) approach for 
Bayesian Optimization

• AutoConf employs five generic metamorphic 
relations (MRs) proposed by Xie et al. [14] for 
testing clustering algorithms

• We present six more custom MRs (for anomaly 
detection) used by AutoConf
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• Optimize the search

• Extract the statistical features

• Build the clustering model

• Compute the silhouette score

• Calculate loss

• Evaluate benign and anomaly metamorphic relations

• Calculate loss
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• Overall, eleven Metamorphic Relations (MRs) in the search process
• Five generic MRs proposed by Xie et al.[14] for testing clustering algorithms

• We propose six new MRs (three benign and three anomaly MRs) for anomaly detection in CPS
• Modifying attributes and clusters (four MRs) and adding new instances (two MRs)

• Benign MRs define the same clustering model behavior for source and follow-up models

• Anomaly MRs define different behaviors for the two models

• Example MR: Anomaly MR modifying Clusters
• We modify the raw attribute of n consecutive instances from few clusters to represent anomalous behavior

• The new anomaly detection result should be different than the original result (the modified instances should 
be flagged as anomalies).
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RQ1: How does unsupervised learning systems perform with AutoConf?

RQ2: Is clustering-based anomaly detection configured by AutoConf more effective 
than baseline anomaly detection approaches?

RQ3: How does Bayesian optimization boost the efficiency of the search process in 
AutoConf?



Configuration Domain and Datasets
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Configuration Domain in our Experiments

Statistics of the Datasets used in our Experiments



RQ1 – Performance of AutoConf and 
Silhouette-only-approach
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Best Configurations found by AutoConf

Comparison of AutoConf with Silhoutte-Only-Approach
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Comparison of AutoConf with Baseline Approaches



RQ3 – Efficiency of the Search in 
AutoConf
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Bayesian Optimization Search Random Search
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• Presented AutoConf, an automated approach to configure clustering-based unsupervised learning systems
• Using Bayesian optimization and Metamorphic Testing

• Demonstrated the effectiveness of AutoConf in detecting anomalies through experiments conducted on six 
datasets

• AutoConf outperformed the baseline approaches
• Achieving an average recall of 0.89 and a precision of 0.84

Future Work:

• Multi-objective Search

• Continuous Configuration

• Expanding AutoConf across Diverse Domains

• Assessing AutoConf on more Datasets
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