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* InStep 1 (datapreprocessing), the pipeline splits training An example unsupervised learning system (pipeline) that
timeseries data into subsequences and extracts statistical automatically discovers anomalies in sensor data [1]
features from them. [T :

° Th|S Step haS th ree pal'ametel'S: l l||| Q o * Divide the data into

. . . Co. ) 11 L — : subsequences.
« optimal windowsize (the length of a sliding cutout of a time ; ) . . % Vectorize the
: Pre-processing :
sequence of data) ©  sequences
. . Trammg l <.+ > 1 % Train the model with
overlap between the subsequences\windows il Vectors - amunsuponisec
* several features can be extracted from data subsequences to learning algorithm.
remove the temporal dimension Q‘ 0
# Cluster and label
Tralnlng the . the validating data.
Feature name Mathematical definition : Model :
Mias =2 (5, ) ;
Range r= max((x) mlm(:t:) - @
Gradient Vg = 22 .\‘ . : Model :
Variance v=21%"% (z;—p)’ P :
Frequency strength v= |DFT(w)|2 ou/\oﬁ Q Oo oo :
Related quantities Symbol — T ?’ 0o °'>
Sliding window size w o oo
Overlap of sliding windows d New Data Labeling & : Labeled
Validating New Data
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* |nStep 2 (trainingthe model), the pipeline performs cluster Y PR :
analysis on the feature vectors (assigns each feature vector /fﬁ\'ﬂ ﬁ‘ @ Dvicethedatainto
to a cluster/category). Ll@ ....... ’> Pre-processing *3:::::;:::55
* This step has two parameters: the clustering method (e.g., Training 5 l <> D wTrain the model with
Kmeans, DBScan) and method's configuration parameters. Data Vectors i an unsupervised
 Forinstance, Kmeans has the following parameters: o tearning algorithm.
(i) the number of clusters, o o # Cluster and label
(ii) predefined centroids (true or false), Traln\:;ndgelthe :  the validating dsta.
(iii) the initialization method (k-means++ or init), :
(iv) the number of runs with different centroid seeds, -"l'- l M%el
(v) the maximum number of iterations for a single run, AT {} oo
(vi) the relative tolerance, and IJI]UI] ....... > N o >
(vii) Kmeans algorithm (e.g., Lloyd or elkan) p — = 0 O
* The feature vectors of the new data are being validated in New Data . Labelng& i Labeled
Step 3 (Labeling & Validation). A idatng ... : w
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* The effectiveness of such an unsupervised learning system Y PUN g
highly depends on the configuration of each step in the system. /‘/I]}li § G @ * Diide the catainto
* e.g., the selection of data preprocessing hyperparameters, A\ - > _ : *3::;”::;::::*’
features, and appropriate clustering algorithms and their . Pre-processing 7 uences.
hype rea rameters Training l e 2 * Train the model with
Data : Vectors : unsupervised
o . learning algorithm.
* Finding the right configurationis challenging due to pe 9§ & Cluster and label
- large configuration space . Tremimgthe  eveldaodela
* numerous manual trialsand errors. : i
At l Model :
oA, Q ° o
* Theabsence of groundtruth labels due to the systems' ool [ .M > D\” O >
unsupervised nature poses a challenge for automating the —m : 0o
configuration process. New Data . Labeling & : Labeled
: Validating New Data
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Automated configuration support for machine learning systems have been proposed in the context of
AutoML [2]-[4]
* Most AutoML approaches focus on supervised learning systems,

Some others concentrate on either clusteralgorithm selection or hyperparameter tuning of the algorithms
[5]-[11]

* Excluding hyperparameters for other ML steps (e.g., data preprocessing)

To deal with thelack of ground truth labels, these approaches rely on internal validity metrics (e.g.,
silhouette score[12])

* These metrics do not capture the dynamic nature of the dataset, and their performance is sensitive to the data
characteristics (e.g., noise, density, and skewed distribution) [13] [14]

AutoConfemploys metamorphictestingto address the lack of ground truth labels.
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Our Solution: AutoConf

SINTEF
S
\\ﬂ‘l/ -’
New

Pre- processmg /The Best Model  Labeled

* Bayesian optimization guided with metamorphic Dataset COSf?gtEﬂion New Dataset

testing output as the objective function

* Metamorphictestingto address the lack of
groundtruth labels while evaluating the
performance of configurations

* Todetermine the optimal configuration

| |

| |

| |

* TreeParzen Estimator (TP E) dpproa ch for ! User-defined Parameter Fitness Objective |
Bayesian Optimization : Search Space Value Decision Decision Search |

* AutoConf employs five generic metamorphic ' :
relations (MRs) proposed by Xie et al. [14] for : . e a |
testing clustering algorithms , g — g@ —> Q — pfe :

* We present six more custom MRs (foranomaly | Datasst  DataManipulation  Pre-processing  Clustering Model
detection) used by AutoConf , forTraining  concerningMRs Generation |

Technology for a better society
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Algorithm 1 FindBestConfig

Require: refData

Require: searchSpace : {window, overlap, model, model Params}
1: losses, selectedV alues < {}
2: meanLoss + 1
3: while —timeout V meanLoss # 0 do

4. selectedValues < OptimizeSearch(searchSpace, meanLoss)
5: X « ExtractFeatures(refData, selectedV alues)

6:  model «+ BuildCluster Model(X, selectedV alues)

7. silhouetteScore = ComputeSilhouetteScore(model)

8:  if silhouetteScore < 1 then

9: losses « |silhouetteScore

10:  else

11: losses < 1 — silhouetteScore

12 end if

13:  losses + NumQO fOutiers(model)/total NumO f Samples
14:  for all mr € BenignM Rs do

15: X' < GenerateFollowupDataset(X, mr)

16: model’ < BuildCluster Model(X', selectedV alues)
17: losses < Evaluate Benign M R(model, model”)

18:  end for

19:  for all mr € AnomalyM Rs do

20: X' «+ GenerateFollowupDataset(X, mr)

21: model’ «+ BuildCluster Model( X', selectedV alues)
22 losses < Evaluate AnomalyM R(model, model”)

23:  end for
24:  meanLoss < mean(losses)
25: end while

Optimize the search
Extract the statistical features

Build the clustering model

Compute the silhouette score

Calculate loss
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Evaluate benign and anomaly metamorphic relations

Calculate loss
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* Overall, eleven Metamorphic Relations (MRs) in the search process
* Five generic MRs proposed by Xie et al.[14] for testing clustering algorithms

* We propose six new MRs (three benignand three anomaly MRs) for anomaly detection in CPS
* Modifying attributes and clusters (four MRs) and adding new instances (two MRs)
* Benign MRs define the same clustering model behavior for source and follow-up models
* Anomaly MRs define different behaviors for the two models

* Example MR: Anomaly MR modifying Clusters
*  We modify the raw attribute of n consecutive instances from few clusters to represent anomalous behavior

* The new anomaly detection result should be different than the original result (the modified instances should
be flagged as anomalies).
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RQ1: How does unsupervised learning systems perform with AutoConf?

RQ2:Is clustering-based anomaly detection configured by AutoConf more effective
than baseline anomaly detection approaches?

RQ3: How does Bayesian optimization boost the efficiency of the search processin
AutoConf?

Technology for a better society
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Configuration Domain in our Experiments

Data Sliding window size w=[30,1500]
preprocessing Overlap d=[0,1)
features={ mean,range,gradient,variance }
Clustering method  {KMeans, Mini-batch KMeans, DBScan, Optics }
Hyperparameters
KMeans n_clusters=[1,155tatistics of the Datasets used in our Experiments
Mini-batch KMeans  n_clusters=[1,

max_iter={50, _ Dataset CPS Anomaly  #Train  #Test

batch_size={2  DJI-Windy Drone Extreme wind 10,016 20,000

DBScan & Optics eps=[0.1.5] DIJI-VelFault Drone Faulty Sensor 5,000 2.000
ﬁé?;i?ﬂfgﬁ PX4-Vibrate Drone  Anomalous vibrations 43547 10,887

algo=[‘auto’, © AArdu-GyroFault  Drone Faulty Sensor 144,176 2,000

Sleep-Apnea ECG Sleep Apnea 50,000 5,000

Bosch-CNC CNC  Anomalous vibrations 59.393 99400

Technology for a better society
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Wl Silhouette-only-approach

Best Configurations found by AutoConf

Dataset w d Model Model  Min.
Params Loss
DI Windy 2% DBSen Compan's?iqf_(zi} A3’t005%.‘onf with Silhoutte-Only-Approach
AutoConf Silhouette-Only-Approach
Dil-VelFau  Dataset Recall Precision Fl-score Recall Precision F1l-score
PX4-Vibrat — DJI-Windy 0.76 0.66 0.71 0.18 0.43 0.26
DIJI-VelFault 1 1 1 1 1 1
PX4-Vibrate 1 0.92 0.96 1 0.87 0.93
Ardu-Gyrol A 1 qu-GyroFault 1 0.9 0.95 1 0.87 0.93
Bosch-CNC 0.76 0.72 0.74 0.5 0.66 0.57
Sleep-Apnea 0.84 0.85 0.85 1 0.65 0.78
Sleep-Apne
minTsamples= 1 ![ R
metric=euclideaif  Answer to RQ1: As each CPS may produce datasets with
Bosch-CNC 1100 330 DBScan aéi?:gu; different characteristics, unsupervised learning systems

min_samples=(| should be configured differently for each CPS dataset.
memc:;l‘;‘:iﬁ:' Thanks to metamorphic testing, AutoConf provides con-
figurations yielding better results than the ones delivered

by the baseline approach using an internal validity metric.

7
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Bl Baseline Anamoly Detection Approaches

Comparison of AutoConf with Baseline Approaches

AutoConf OneSVM IF LOF
Dataset Recall Precision F1l-score Fl-score Fl-score Fl-score
DJI-Windy 0.76 0.66 0.71 0.51 0.65 0.49
DIJI-VelFault ] 1 ] ] 1 1
PX4-Vibrate ] 0.92 0.96 0.64 0.64 0.4
Ardu-GyroFault ] 0.9 0.95 0.93 0.9 0.9
Bosch-CNC 0.76 0.72 0.74 0.56 0.55 0.49
Sleep-Apnea 0.84 0.85 0.85 0.39 0.39 0.39

Answer to RQ2: AutoConf can identify configurations
that yield similar or better anomaly detection results than
the baseline anomaly detection approaches.

Technology for a better society
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Bayesian Optimization Search Random Search

Random Search
eps vs trial min_samples vs trial loss vs trial

TPE search
eps vs trial min_samples vs trial loss vs trial

G0

30

20

10

T T T T
o 1000 2000 3000

Answer to RQ3: AutoConf leverages Bayesian optimiza-
tion to achieve a superior guarantee of identifying the
optimal configuration within a time budget. It efficiently
guides the search toward the input space that minimizes
the loss as determined by the prescribed loss functions.
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Bl Conclusion and Future Work

Presented AutoConf, an automated approach to configure clustering-based unsupervised learning systems
* Using Bayesian optimization and Metamorphic Testing

Demonstrated the effectiveness of AutoConf in detecting anomalies through experiments conducted on six
datasets

AutoConf outperformed the baseline approaches
* Achieving an average recall of 0.89 and a precision of 0.84

Future Work:

Multi-objective Search
Continuous Configuration
Expanding AutoConf across Diverse Domains

Assessing AutoConf on more Datasets

Technology for a better society
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