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Introduction
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Carbon footprint of machine learning (ML)
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Machine learning and computational resources

Three eras of machine learning1:

1 Pre Deep Learning Era (1952-2010)
2 Deep Learning Era (2010-2022)
3 Large-Scale Era (2015-2022)

1Sevilla et al. (2022): Compute Trends Across Three Eras of Machine Learning

https://arxiv.org/pdf/2202.05924.pdf
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Machine learning and computational resources

Figure 1: Size of ML models over time2

In this figure we can see the three different eras, with the growth of model
size on a logarithmic scale. The size is here number of parameters, which
is directly correlated to how many calculations that has to be performed
during both training and inference.

2Sevilla et al. (2022): Compute Trends Across Three Eras of Machine Learning

https://arxiv.org/pdf/2202.05924.pdf
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Machine learning and computational resources

Figure 2: Size of LLMs over time

We can also look specifically at the sizes of Large Language Models, which
is the main focus of this research topic, and they too have shown a large
increase. What is not shown here is that there also has been a lot of
development on smaller models, especially in the range aroudn a few
billion parameters. Typical sizes of models you can run on a powerful
laptop is 7 billion and 13 billion parameters.
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Machine learning and computational resources

The last decade of research in machine learning3:
The carbon footprint of ML is increasing
Ca. 70% of the ML-models was trained on high carbon energy sources
Transformer models are very popular – and very carbon intensive
Larger energy consumption does not necessarily mean better
performance

LLMs are widely deployed
ChatGPT:

Reached 1 million users in 5 days
Currently over 100 million active users

Difficult to estimate resource consumption

3Luccionu et al. (2023): Counting Carbon: A Survey of Factors Influencing the
Emissions of Machine Learning

https://arxiv.org/pdf/2302.08476.pdf
https://arxiv.org/pdf/2302.08476.pdf
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Section 2

Our work: The price of prompting
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What is the energy consumption of LLMs?
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What is the energy consumption of LLMs?
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Our framework – Technical details

Developed in Python
External tools:

Monitoring of power consumption: Scaphandre
LLM service with OpenAI-compatible API

https://github.com/hubblo-org/scaphandre
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Scaphandre

Figure 3: Scaphandre – open source tool for energy consumption metrics.

https://github.com/hubblo-org/scaphandre
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Scaphandre – Example of monitoring

Figure 4: Grafana visualization of Scaphandre monitoring an LLM service.
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LLM services



Introduction Our work: The price of prompting Summary

Ollama

Easy to install
CPU and GPU support
Wide range of available models
REST API
. . . and more
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Open source LLMs

Figure 5: Ollama supports a wide range of open source LLMs.
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Our framework
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Our framework – Methodology

1 Get prompt from dataset (or write one manually)
2 Start power monitoring (Scaphandre)
3 Query LLM service with prompt
4 Receive response from LLM service
5 Stop power monitoring
6 Save prompt, response, metadata, and metrics.
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Inference power usage

Figure 6: Example of power use during LLM inference.
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Correlation matrix

Figure 7: Correlations of data from ~5000 general purpose prompts.
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LLM energy consumption

What to do with the tool and the data?
What was the cost of this chatbot conversation (monitoring)?
What will this task cost (forecasting)?
What model is most efficient (for a given task)?
What deployment service is most efficient?
Find a balance between efficiency and performance
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LLM energy consumption

How to forecast consumption?
Prompt length as input – too simple
NLP-based model – may be too complex

Forecasting based on type of task
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Section 3

Summary
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Summary

Our work:
Make a framework for
monitoring LLM services
Create datasets for LLM
usage and energy
consumption
Analyze and create models
that can forecast and guide
towards more sustainable
LLM usage

Paper coming soon

Figure 8: Link to slides

erik.johannes.husom@sintef.no

https://erikjohannes.no/slides/talk-2024-03-21-llm-energy-consumption-fagdrypp.pdf
mailto:erik.johannes.husom@sintef.no
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