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Introduction

e The rapid advancement of Artificial Intelligence (Al) brings unprecedented
technological growth.

e However, it also raises concerns regarding its environmental impact, especially
carbon emissions.

e Our goal: To develop methodologies that balance high Al performance with minimal
environmental impact.
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Our contributions

¢ Novel sustainable ML pipeline: CEMAI offers a new approach to ML development,
environmentally-conscious workflows.

e Empirical evidence: Provides empirical evidence on the effectiveness of using carbon
emissions as a metric for pipeline configuration and optimization.

¢ Al engineering dimensions for sustainability: Introduces new Al engineering
dimensions focused on sustainability, including energy measurement and carbon
emission measurement, fostering a shift towards more ecologically responsible Al
engineering practices.
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ML pipeline

Machine learning pipeline

Data preparation Model development
-
Data P Data cleaning Feature engineering Scaling > Model configuration Training Validation o
A A Model
Tuning
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CEMAI concept

Two core concepts:
e Green Al metrics

e Green pipeline orchestration
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CEMAI concept

Two core concepts:
e Green Al metrics
e Green pipeline orchestration

ML pipeline

Configuration Pipeline orchestration

and monitoring (DVC) Emissions log

Stage Energy usage Emissions

5 | X
Data set t Stage 1 Stage 2 ‘ Stage 4

1 0.001kwh 1e-3gCO2eq

2 0.002 kWh 2e-3 gCO2eq

\ Energy usage tracking / \ Energy usage tracking / 4 0.005kWh 5e-3 gCO2eq

_

\ Energy usage tracking /

6/14




SINTEF

Experiments

e RQ1: What are carbon emissions in different stages of the pipeline and can they be
optimized?

e RQ2: How does the choice of hardware affect the overall carbon emissions of the
pipeline?
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Experiment design

Dataset Machine Task #Train #Test
Piston Rod Turning  Useful Lifetime 332,919 83,229
Broaching Broaching Tool wear 3,072,024 2,048,016
Bosch CNC CNC Anomaly 1,168,434 1,168,434
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RQ1: What are carbon emissions in different stages of the pipeline and
can they be optimized?

Carbon emissions per stage (gCO,eq)

Model Profile Clean Featurize Split  Scale Sequentialize Combine Train Evaluate Explain | Total | R?
DT 0.1291  0.0197 0.0004 0.0001  0.0002 0.0021 0.0002 0.0113 0.0015 0.0601 0.2247 |-1.22
DT w/FE 0.1291  0.0197 0.0083 0.0000  0.0000 0.0000 0.0002 0.0014 0.0015 0.0022 | 0.1625 | 0.91
RF 0.1291  0.0197 0.0026 0.0000  0.0002 0.0021 0.0002 1.1697 0.0000 0.0000 1.3237 | 0.76
RF w/FE 0.1291  0.0197 0.0083 0.0000  0.0000 0.0000 0.0002 0.0014 0.0017 0.0622 | 0.2227 | 0.83
GB 0.1291  0.0197 0.0034 0.0001  0.0003 0.0025 0.0002 0.1608 0.0059 0.0634 | 0.3859 | 0.12
GB w/FE 0.1291  0.0197 0.0083 0.0000  0.0000 0.0000 0.0000 0.0014 0.0018 0.0056 | 0.1662 | 0.92
XGB 0.1291  0.0197 0.0004 0.0001  0.0002 0.0021 0.0002 0.0336 0.0043 0.0829 | 0.1599 | 0.17
XGB w/FE 0.1291  0.0197 0.0055 0.0000  0.0000 0.0000 0.0000 0.0014 0.0015 0.0026 | 0.1599 | 0.70
DNN 0.1291  0.0197 0.0004 0.0001  0.0002 0.0004 0.0002 0.0317 0.0030 0.1631 0.3479 +10.80
DNN w/FE 0.1291  0.0197 0.0067 0.0004  0.0036 0.0009 0.0015 0.0430 0.0031 0.1835 | 0.3915 | 0.48
CNN 0.1291  0.0197 0.0004 6.1989  0.0002 0.0004 0.0002 0.0016 0.0015 0.0601 0.2134 |-0.08
CNN w/FE 0.1291  0.0197 0.0067 0.0004 0.0013 0.0022 0.0040 0.2112 0.0044 0.1323 | 0.5112 0.04
LSTM 0.1291  0.0197 0.0004 0.0001  0.0002 0.0004 0.0002 8.3925 0.0240 0.4471 9.0137 0.01
LSTM w/FE | 0.1291  0.0197 0.0083 0.0000  0.0000 0.0034 0.0004  11.0341 0.0240 0.3863 |11.6053 —0.08

Figure: Broaching use case
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RQ1: What are carbon emissions in different stages of the pipeline and
can they be optimized?

e The train and evalute stages emit the most CO2 in our datasets

e Feature engineering adds emissions but can improve performance, and reduce
model complexity

e Incorporating Green Al metrics into the development process enables choosing
greener models with adequate performance
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RQ2 How does the choice of hardware affect the overall carbon emissions
of the pipeline?
e Hardware choice has significant influence

e Laptops consistently exhibit lower carbon emissions than the cloud server in our
experiments

Carbon emissions (gCO2eq)

Case study Model Laptop (CPU)  Laptop (GPU) Cloud
Piston Rod RF 0.2502 0.1977 1.1420
Broaching DT w/FE 0.1164 0.1625 0.6431
Bosch CNC DT w/FE 0.0349 0.0271 0.1608
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Future Work and Implications

e Continual Learning: Exploring the integration of continual learning to adapt models
with minimal environmental impact.

e Transfer Learning: Leveraging transfer learning strategies to minimize retraining and
computational resources, thus reducing carbon emissions.

e Multi-objective Optimization: Future directions include developing algorithms for
optimizing both ML model performance and sustainability, balancing computational
efficiency with ecological responsibility.
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Conclusion

e CEMAI enables a balanced approach to ML model development
e Prioritizing both performance and reduced carbon footprint

e Call to Action: Encourages the adoption of CEMAI and similar practices to promote
sustainability within the Al and machine learning fields.
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